Page 43 - Read Online
P. 43
Page 34 of 35 Scherman. Rare Dis Orphan Drugs J 2023;2:12 https://dx.doi.org/10.20517/rdodj.2023.01
125. Aimo A, Castiglione V, Rapezzi C, et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol
2022;19:655-67. DOI
126. Tanowitz M, Hettrick L, Revenko A, Kinberger GA, Prakash TP, Seth PP. Asialoglycoprotein receptor 1 mediates productive uptake
of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic
Acids Res 2017;45:12388-400. DOI PubMed PMC
127. Kim Y, Jo M, Schmidt J, et al. Enhanced potency of GalNAc-conjugated antisense oligonucleotides in hepatocellular cancer models.
Mol Ther 2019;27:1547-57. DOI PubMed PMC
128. Brook JD, McCurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the
3' end of a transcript encoding a protein kinase family member. Cell 1992;69:385. DOI PubMed
129. Konieczny P, Stepniak-Konieczna E, Sobczak K. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic
Acids Res 2014;42:10873-87. DOI PubMed PMC
130. Goodwin M, Mohan A, Batra R, et al. MBNL Sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain.
Cell Rep 2015;12:1159-68. DOI PubMed PMC
131. Overby SJ, Cerro-Herreros E, Llamusi B, Artero R. RNA-mediated therapies in myotonic dystrophy. Drug Discov Today
2018;23:2013-22. DOI PubMed
132. Lee JE, Bennett CF, Cooper TA. RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci
USA 2012;109:4221-6. DOI PubMed PMC
133. A safety and tolerability study of multiple doses of ISIS-DMPKRx in adults with myotonic dystrophy Type 1. Available from: https://
clinicaltrials.gov/ct2/show/NCT02312011 [Last accessed on 29 May 2023].
134. Sugo T, Terada M, Oikawa T, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control
Release 2016;237:1-13. DOI
135. Safety, tolerability, pharmacodynamic, efficacy, and pharmacokinetic study of dyne-101 in participants with myotonic dystrophy
Type 1 (ACHIEVE). Available from: https://www.clinicaltrials.gov/ct2/show/NCT05481879 [Last accessed on 29 May 2023].
136. Nguyen Q, Yokota T. Degradation of Toxic RNA in myotonic dystrophy using gapmer antisense oligonucleotides. In: Yokota T,
Maruyama R, editors. Gapmers. New York: Springer US; 2020. pp. 99-109. DOI
137. Cerro-Herreros E, González-Martínez I, Moreno-Cervera N, et al. Therapeutic potential of antagomiR-23b for treating myotonic
dystrophy. Mol Ther Nucleic Acids 2020;21:837-49. DOI PubMed PMC
138. Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA. Correction of ClC-1 splicing eliminates chloride channelopathy
and myotonia in mouse models of myotonic dystrophy. J Clin Invest 2007;117:3952-7. DOI PubMed PMC
139. Negishi Y, Endo-takahashi Y, Ishiura S. Exon skipping by ultrasound-enhanced delivery of morpholino with bubble liposomes for
myotonic dystrophy model mice. In: Yokota T, Maruyama R, editors. Exon Skipping and Inclusion Therapies. New York: Springer;
2018. pp. 481-7. DOI
140. Xia X, Zhou H, Huang Y, Xu Z. Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit
in vivo. Neurobiol Dis 2006;23:578-86. DOI PubMed
141. Lombardi MS, Jaspers L, Spronkmans C, et al. A majority of Huntington's disease patients may be treatable by individualized allele-
specific RNA interference. Exp Neurol 2009;217:312-9. DOI
142. Hauser S, Helm J, Kraft M, Korneck M, Hübener-Schmid J, Schöls L. Allele-specific targeting of mutant ataxin-3 by antisense
oligonucleotides in SCA3-iPSC-derived neurons. Mol Ther Nucleic Acids 2022;27:99-108. DOI PubMed PMC
143. Pfister EL, Kennington L, Straubhaar J, et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of
Huntington's disease patients. Curr Biol 2009;19:774-8. DOI PubMed PMC
144. Kay C, Collins JA, Caron NS, et al. A comprehensive haplotype-targeting strategy for allele-specific HTT suppression in huntington
disease. Am J Hum Genet 2019;105:1112-25. DOI PubMed PMC
145. Conroy F, Miller R, Alterman JF, et al. Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington's
disease models. Nat Commun 2022;13:5802. DOI PubMed PMC
146. Trochet D, Prudhon B, Mekzine L, et al. Benefits of therapy by dynamin-2-mutant-specific silencing are maintained with time in a
mouse model of dominant centronuclear myopathy. Mol Ther Nucleic Acids 2022;27:1179-90. DOI PubMed PMC
147. Dudhal S, Mekzine L, Prudhon B, et al. Development of versatile allele-specific siRNAs able to silence all the dominant dynamin 2
mutations. Mol Ther Nucleic Acids 2022;29:733-48. DOI PubMed PMC
148. Züchner S, Noureddine M, Kennerson M, et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant
intermediate charcot-marie-tooth disease. Nat Genet 2005;37:289-94. DOI
149. Sambuughin N, Goldfarb LG, Sivtseva TM, et al. Adult-onset autosomal dominant spastic paraplegia linked to a GTPase-effector
domain mutation of dynamin 2. BMC Neurol 2015;15:223. DOI PubMed PMC
150. Fujise K, Noguchi S, Takeda T. Centronuclear myopathy caused by defective membrane remodelling of dynamin 2 and BIN1
variants. Int J Mol Sci 2022;23:6274. DOI PubMed PMC
151. Wang L, Barylko B, Byers C, Ross JA, Jameson DM, Albanesi JP. Dynamin 2 mutants linked to centronuclear myopathies form
abnormally stable polymers. J Biol Chem 2010;285:22753-7. DOI PubMed PMC
152. Cowling BS, Chevremont T, Prokic I, et al. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. J Clin Invest
2014;124:1350-63. DOI PubMed PMC
153. Koutsopoulos OS, Kretz C, Weller CM, et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur J