Page 43 - Read Online
P. 43

Page 34 of 35             Scherman. Rare Dis Orphan Drugs J 2023;2:12  https://dx.doi.org/10.20517/rdodj.2023.01

               125.      Aimo A, Castiglione V, Rapezzi C, et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol
                    2022;19:655-67.  DOI
               126.      Tanowitz M, Hettrick L, Revenko A, Kinberger GA, Prakash TP, Seth PP. Asialoglycoprotein receptor 1 mediates productive uptake
                    of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic
                    Acids Res 2017;45:12388-400.  DOI  PubMed  PMC
               127.      Kim Y, Jo M, Schmidt J, et al. Enhanced potency of GalNAc-conjugated antisense oligonucleotides in hepatocellular cancer models.
                    Mol Ther 2019;27:1547-57.  DOI  PubMed  PMC
               128.      Brook JD, McCurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the
                    3' end of a transcript encoding a protein kinase family member. Cell 1992;69:385.  DOI  PubMed
               129.      Konieczny P, Stepniak-Konieczna E, Sobczak K. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic
                    Acids Res 2014;42:10873-87.  DOI  PubMed  PMC
               130.      Goodwin M, Mohan A, Batra R, et al. MBNL Sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain.
                    Cell Rep 2015;12:1159-68.  DOI  PubMed  PMC
               131.      Overby SJ, Cerro-Herreros E, Llamusi B, Artero R. RNA-mediated therapies in myotonic dystrophy. Drug Discov Today
                    2018;23:2013-22.  DOI  PubMed
               132.      Lee JE, Bennett CF, Cooper TA. RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci
                    USA 2012;109:4221-6.  DOI  PubMed  PMC
               133.      A safety and tolerability study of multiple doses of ISIS-DMPKRx in adults with myotonic dystrophy Type 1. Available from: https://
                    clinicaltrials.gov/ct2/show/NCT02312011 [Last accessed on 29 May 2023].
               134.      Sugo T, Terada M, Oikawa T, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control
                    Release 2016;237:1-13.  DOI
               135.      Safety, tolerability, pharmacodynamic, efficacy, and pharmacokinetic study of dyne-101 in participants with myotonic dystrophy
                    Type 1 (ACHIEVE). Available from: https://www.clinicaltrials.gov/ct2/show/NCT05481879 [Last accessed on 29 May 2023].
               136.      Nguyen Q, Yokota T. Degradation of Toxic RNA in myotonic dystrophy using gapmer antisense oligonucleotides. In: Yokota T,
                    Maruyama R, editors. Gapmers. New York: Springer US; 2020. pp. 99-109.  DOI
               137.      Cerro-Herreros E, González-Martínez I, Moreno-Cervera N, et al. Therapeutic potential of antagomiR-23b for treating myotonic
                    dystrophy. Mol Ther Nucleic Acids 2020;21:837-49.  DOI  PubMed  PMC
               138.      Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA. Correction of ClC-1 splicing eliminates chloride channelopathy
                    and myotonia in mouse models of myotonic dystrophy. J Clin Invest 2007;117:3952-7.  DOI  PubMed  PMC
               139.      Negishi Y, Endo-takahashi Y, Ishiura S. Exon skipping by ultrasound-enhanced delivery of morpholino with bubble liposomes for
                    myotonic dystrophy model mice. In: Yokota T, Maruyama R, editors. Exon Skipping and Inclusion Therapies. New York: Springer;
                    2018. pp. 481-7.  DOI
               140.      Xia X, Zhou H, Huang Y, Xu Z. Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit
                    in vivo. Neurobiol Dis 2006;23:578-86.  DOI  PubMed
               141.      Lombardi MS, Jaspers L, Spronkmans C, et al. A majority of Huntington's disease patients may be treatable by individualized allele-
                    specific RNA interference. Exp Neurol 2009;217:312-9.  DOI
               142.      Hauser S, Helm J, Kraft M, Korneck M, Hübener-Schmid J, Schöls L. Allele-specific targeting of mutant ataxin-3 by antisense
                    oligonucleotides in SCA3-iPSC-derived neurons. Mol Ther Nucleic Acids 2022;27:99-108.  DOI  PubMed  PMC
               143.      Pfister EL, Kennington L, Straubhaar J, et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of
                    Huntington's disease patients. Curr Biol 2009;19:774-8.  DOI  PubMed  PMC
               144.      Kay C, Collins JA, Caron NS, et al. A comprehensive haplotype-targeting strategy for allele-specific HTT suppression in huntington
                    disease. Am J Hum Genet 2019;105:1112-25.  DOI  PubMed  PMC
               145.      Conroy F, Miller R, Alterman JF, et al. Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington's
                    disease models. Nat Commun 2022;13:5802.  DOI  PubMed  PMC
               146.      Trochet D, Prudhon B, Mekzine L, et al. Benefits of therapy by dynamin-2-mutant-specific silencing are maintained with time in a
                    mouse model of dominant centronuclear myopathy. Mol Ther Nucleic Acids 2022;27:1179-90.  DOI  PubMed  PMC
               147.      Dudhal S, Mekzine L, Prudhon B, et al. Development of versatile allele-specific siRNAs able to silence all the dominant dynamin 2
                    mutations. Mol Ther Nucleic Acids 2022;29:733-48.  DOI  PubMed  PMC
               148.      Züchner S, Noureddine M, Kennerson M, et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant
                    intermediate charcot-marie-tooth disease. Nat Genet 2005;37:289-94.  DOI
               149.      Sambuughin N, Goldfarb LG, Sivtseva TM, et al. Adult-onset autosomal dominant spastic paraplegia linked to a GTPase-effector
                    domain mutation of dynamin 2. BMC Neurol 2015;15:223.  DOI  PubMed  PMC
               150.      Fujise K, Noguchi S, Takeda T. Centronuclear myopathy caused by defective membrane remodelling of dynamin 2 and BIN1
                    variants. Int J Mol Sci 2022;23:6274.  DOI  PubMed  PMC
               151.      Wang L, Barylko B, Byers C, Ross JA, Jameson DM, Albanesi JP. Dynamin 2 mutants linked to centronuclear myopathies form
                    abnormally stable polymers. J Biol Chem 2010;285:22753-7.  DOI  PubMed  PMC
               152.      Cowling BS, Chevremont T, Prokic I, et al. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. J Clin Invest
                    2014;124:1350-63.  DOI  PubMed  PMC
               153.      Koutsopoulos OS, Kretz C, Weller CM, et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur J
   38   39   40   41   42   43   44   45   46   47   48