Page 101 - Read Online
P. 101

Zhao et al. Microstructures 2023;3:2023022  https://dx.doi.org/10.20517/microstructures.2022.46  Page 9 of 9

                   reversible pressure induced spin-crossover phase transition. J Alloys Compd 2018;749:556-60.  DOI
               18.      Szafrański M, Wei W, Wang Z, Li W, Katrusiak A. Research update: tricritical point and large caloric effect in a hybrid organic-
                   inorganic perovskite. APL Mater 2018;6:100701.  DOI
               19.      Bom NM, Imamura W, Usuda EO, Paixão LS, Carvalho AMG. Giant barocaloric effects in natural rubber: a relevant step toward
                   solid-state cooling. ACS Macro Lett 2018;7:31-6.  DOI
               20.      Miliante CM, Christmann AM, Usuda EO, et al. Unveiling the origin of the giant barocaloric effect in natural rubber. Macromolecules
                   2020;53:2606-15.  DOI
               21.      Sagotra AK, Chu D, Cazorla C. Room-temperature mechanocaloric effects in lithium-based superionic materials. Nat Commun
                   2018;9:3337.  DOI  PubMed  PMC
               22.      Cazorla C, Errandonea D. Giant mechanocaloric effects in fluorite-structured superionic materials. Nano Lett 2016;16:3124-9.  DOI
                   PubMed
               23.      Ma N, Reis MS. Barocaloric effect on graphene. Sci Rep 2017;7:13257.  DOI  PubMed  PMC
               24.      Li B, Kawakita Y, Ohira-Kawamura S, et al. Colossal barocaloric effects in plastic crystals. Nature 2019;567:506-10.  DOI
               25.      Aznar A, Lloveras P, Barrio M, et al. Reversible and irreversible colossal barocaloric effects in plastic crystals. J Mater Chem A
                   2020;8:639-47.  DOI
               26.      Lloveras P, Tamarit J. Advances and obstacles in pressure-driven solid-state cooling: a review of barocaloric materials. MRS Energy
                   Sustain 2021:8;3-15.  DOI
               27.      Tao K, Song W, Lin J, et al. Giant reversible barocaloric effect with low hysteresis in antiperovskite PdNMn  compound. Scripta
                                                                                            3
                   Mater 2021;203:114049.  DOI
               28.      Matsunami D, Fujita A, Takenaka K, Kano M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in
                   Mn GaN. Nat Mater 2015;14:73-8.  DOI  PubMed
                     3
               29.      Boldrin  D,  Mendive-tapia  E,  Zemen  J,  et  al.  Multisite  exchange-enhanced  barocaloric  response  in  Mn NiN.  Phys  Rev  X
                                                                                             3
                   2018;8:041035.  DOI
               30.      Dusek M, Petricek V. Towards the routine application of computing system Jana2000. Acta Crystallogr A Found Crystallogr
                   2005;61:c104-5.  DOI
               31.      Krén E, Kádár G, Pál L, Sólyom J, Szabó P, Tarnóczi T. Magnetic structures and exchange interactions in the Mn-Pt system. Phys Rev
                   1968;171:574-85.  DOI
               32.      Krén E, Kádár G, Pál L, Szabó P. Investigation of the first-order magnetic transformation in Mn Pt. J Appl Phys 1967;38:1265-6.  DOI
                                                                                 3
               33.      Tomiyoshi S, Yasui H, Kaneko T, et al. Magnetic excitations in Mn Pt at high energies by the TOF method. J Magn Magn Mater
                                                                 3
                   1990;90-91:203-4.  DOI
               34.      Zuniga-Cespedes BE, Manna K, Noad HML, et al. Observation of an anomalous hall effect in single-crystal Mn Pt. Mater Sci
                                                                                                3
                   2022;2209:05865.  DOI
               35.      An N, Tang M, Hu S, et al. Structure and strain tunings of topological anomalous hall effect in cubic noncollinear antiferromagnet
                   Mn Pt epitaxial films. Sci China Phys Mech Astron 2020;63:297511.  DOI
                     3
               36.      Yasui H, Kaneko T, Yoshida H, Abe S, Kamigaki K, Mori N. Pressure dependence of magnetic transition temperatures and lattice
                   parameter in an antiferromagnetic ordered alloy Mn Pt. J Phys Soc Jpn 1987;56:4532-9.  DOI
                                                    3
               37.      Yasui H, Ohashi M, Abe S, et al. Magnetic order-order transformation in Mn Pt. J Magn Magn Mater 1992;104-107:927-8.  DOI
                                                                    3
               38.      Ricodeau JA. Model of the antiferromagnetic-antiferromagnetic transition in Mn Pt alloys. J Phys F Met Phys 1974;4:1285-303.  DOI
                                                                       3
               39.      Boldrin D. Fantastic barocalorics and where to find them. Appl Phys Lett 2021;118:170502.  DOI
               40.      Ehrenreich H, Spaepen F. Solid state physics: advances in research and applications. Amsterdam Boston: Academic Press; 2006.
               41.      Hemberger J, von Nidda HA, Tsurkan V, Loidl A. Large magnetostriction and negative thermal expansion in the frustrated
                   antiferromagnet ZnCr Se . Phys Rev Lett 2007;98:147203.  DOI  PubMed
                                   4
                                 2
               42.      Broholm C, Aeppli G, Espinosa GP, Cooper AS. Antiferromagnetic fluctuations and short-range order in a Kagomé lattice. Phys Rev
                   Lett 1990;65:3173-6.  DOI
               43.      Li B, Ren WJ, Zhang Q, et al. Magnetostructural coupling and magnetocaloric effect in Ni-Mn-In. Appl Phys Lett 2009;95:172506.
                   DOI
               44.      Zhang K, Song R, Qi J, et al. Colossal barocaloric effect in carboranes as a performance tradeoff. Adv Funct Mater 2022;32:2112622.
                   DOI
               45.      Ren Q, Qi J, Yu D, et al. Ultrasensitive barocaloric material for room-temperature solid-state refrigeration.  Nat Commun
                   2022;13:2293.  DOI  PubMed  PMC
               46.      Zhang Z, Li K, Lin S, et al. Thermal batteries based on inverse barocaloric effects. Sci Adv 2023;9:eadd0374.  DOI  PubMed  PMC
               47.      Lloveras P, Samanta T, Barrio M, et al. Giant reversible barocaloric response of MnNiSi) (FeCoGe)  (x = 0.39, 0.40, 0.41). APL
                                                                                       x
                                                                               1-x
                   Mater 2019;7:061106.  DOI
               48.      Greca LG, Lehtonen J, Tardy BL, Guo J, Rojas OJ. Biofabrication of multifunctional nanocellulosic 3D structures: a facile and
                   customizable route. Mater Horiz 2018;5:408-15.  DOI
   96   97   98   99   100   101   102   103   104   105   106