Page 100 - Read Online
P. 100

Page 8 of 9          Zhao et al. Microstructures 2023;3:2023022  https://dx.doi.org/10.20517/microstructures.2022.46

               Revision of articles: Zhang Z (Zhang Zhidong)


               Availability of data and materials
               The datasets used and analyzed during the current study are available from the corresponding author upon
               reasonable request.

               Financial support and sponsorship
               The work was supported by the Ministry of Science and Technology of China (Grant nos. 2021YFB3501201,
               2022YFE0109900, and 2020YFA0406002) and the Key Research Program of Frontier Sciences of Chinese
               Academy of Sciences (Grant no. ZDBS-LY-JSC002).

               Conflicts of interest
               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Sari O, Balli M. From conventional to magnetic refrigerator technology. Int J Refrig 2014;37:8-15.  DOI
               2.       Müller K, Fauth F, Fischer S, Koch M, Furrer A, Lacorre P. Cooling by adiabatic pressure application in Pr La NiO . Appl Phys Lett
                                                                                         1-x
                                                                                               3
                                                                                            x
                   1998;73:1056-8.  DOI
               3.       Strässle T, Furrer A, Lacorre P, Müller K. A novel principle for cooling by adiabatic pressure application in rare-earth compounds. J
                   Alloys Compd 2000;303-304:228-31.  DOI
               4.       Mañosa L, González-Alonso D, Planes A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat
                   Mater 2010;9:478-81.  DOI
               5.       Mañosa L, González-Alonso D, Planes A, et al. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nat
                   Commun 2011;2:595.  DOI
               6.       Fujieda  S,  Fujita  A,  Fukamichi  K.  Strong  pressure  effect  on  the  curie  temperature  of  itinerant-electron  metamagnetic
                   La(Fe  Si  ) Hy and La Ce (Fe  Si  ) Hy. Mater Trans 2009;50:483-6.  DOI
                       0.88  0.12 13  0.7  0.3  0.88  0.12 13
               7.       Yuce S, Barrio M, Emre B, et al. Barocaloric effect in the magnetocaloric prototype Gd Si Ge . Appl Phys Lett 2012;101:071906.  DOI
                                                                           5  2  2
               8.       Wu RR, Bao LF, Hu FX, et al. Giant barocaloric effect in hexagonal Ni In-type Mn-Co-Ge-In compounds around room temperature.
                                                                  2
                   Sci Rep 2015;5:18027.  DOI  PubMed  PMC
               9.       Stern-taulats E, Gràcia-condal A, Planes A, et al. Reversible adiabatic temperature changes at the magnetocaloric and barocaloric
                   effects in Fe Rh . Appl Phys Lett 2015;107:152409.  DOI
                           49
                              51
               10.      Stern-taulats E, Planes A, Lloveras P, et al. Barocaloric and magnetocaloric effects in Fe Rh . Phys Rev B 2014;89:214105.  DOI
                                                                            49  51
               11.      Aznar A, Lloveras P, Romanini M, et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat
                   Commun 2017;8:1851.  DOI  PubMed  PMC
               12.      Bermúdez-García JM, Sánchez-Andújar M, Castro-García S, López-Beceiro J, Artiaga R, Señarís-Rodríguez MA. Giant barocaloric
                   effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca) ] perovskite under easily accessible pressures. Nat Commun
                                                               3
                   2017;8:15715.  DOI  PubMed  PMC
               13.      Lloveras P, Stern-Taulats E, Barrio M, et al. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat
                   Commun 2015;6:8801.  DOI  PubMed  PMC
               14.      Mikhaleva E, Gorev M, Bondarev V, Bogdanov E, Flerov I. Comparative analysis of elastocaloric and barocaloric effects in single-
                   crystal and ceramic ferroelectric (NH ) SO . Scripta Mater 2021;191:149-54.  DOI
                                           4 2
                                               4
               15.      Yu C, Huang J, Qi J, et al. Giant barocaloric effects in formamidinium iodide. APL Mater 2022;10:011109.  DOI
               16.      Salgado-beceiro J, Nonato A, Silva RX, et al. Near-room-temperature reversible giant barocaloric effects in [(CH ) N]Mn[N ]  hybrid
                                                                                            3 4
                                                                                                    3 3
                   perovskite. Mater Adv 2020;1:3167-70.  DOI
               17.      Ranke P, Alho B, Ribeiro P. First indirect experimental evidence and theoretical discussion of giant refrigeration capacity through the
   95   96   97   98   99   100   101   102   103   104   105