Page 76 - Read Online
P. 76

Xiao et al. Microstructures 2023;3:2023006  https://dx.doi.org/10.20517/microstructures.2022.26  Page 17 of 17

                   Mater 2018;150:74-7.  DOI
               61.      Pu Z, Chen Y, Dai L. Strong resistance to hydrogen embrittlement of high-entropy alloy. Mater Sci Eng A 2018;736:156-66.  DOI
               62.      Luo H, Li Z, Raabe D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci Rep 2017;7:9892.  DOI
                   PubMed  PMC
               63.      Luo H, Lu W, Fang X, Ponge D, Li Z, Raabe D. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement
                   resistance of a high-entropy alloy. Mater Today 2018;21:1003-9.  DOI
               64.      Koyama M, Ichii K, Tsuzaki K. Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-
                   entropy alloy. Int J Hydrog Energy 2019;44:17163-7.  DOI
               65.      Koyama M, Wang H, Verma VK, Tsuzaki K, Akiyama E. Effects of Mn content and grain size on hydrogen embrittlement
                   susceptibility of face-centered cubic high-entropy alloys. Metall Mater Trans A 2020;51:5612-6.  DOI
               66.      Mohammadi A, Novelli M, Arita M, et al. Gradient-structured high-entropy alloy with improved combination of strength and
                   hydrogen embrittlement resistance. Corros Sci 2022;200:110253.  DOI
               67.      Fu Z, Yang B, Gan K, et al. Improving the hydrogen embrittlement resistance of a selective laser melted high-entropy alloy via
                   modifying the cellular structures. Corros Sci 2021;190:109695.  DOI
               68.      Zhou X, Tehranchi A, Curtin WA. Mechanism and prediction of hydrogen embrittlement in fcc stainless steels and high entropy
                   alloys. Phys Rev Lett 2021;127:175501.  DOI  PubMed
               69.      Xie Z, Wang Y, Lu C, Dai L. Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy.
                   Mater Today Commun 2021;26:101902.  DOI
               70.      Zhao Y, Yang T, Han B, et al. Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened
                   medium-entropy alloy. Mater Res Lett 2019;7:152-8.  DOI
               71.      Yang T, Zhao Y, Liu W, Kai J, Liu C. L1 -strengthened high-entropy alloys for advanced structural applications. J Mater Res
                                                2
                   2018;33:2983-97.  DOI
               72.      Zhao Y, Yang T, Zhu J, et al. Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr Mater
                   2018;148:51-5.  DOI
               73.      Hou J, Liu S, Cao B, et al. Designing nanoparticles-strengthened high-entropy alloys with simultaneously enhanced strength-ductility
                   synergy at both room and elevated temperatures. Acta Mater 2022;238:118216.  DOI
               74.      Cao B, Kong H, Fan L, et al. Heterogenous columnar-grained high-entropy alloys produce exceptional resistance to intermediate-
                   temperature intergranular embrittlement. Scr Mater 2021;194:113622.  DOI
               75.      Wu S, Yang T, Cao B, et al. Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated
                   grain boundaries. Scr Mater 2021;204:114066.  DOI
               76.      Wang Z, Wu H, Wu Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering. Mater
                   Today 2022;54:83-9.  DOI
               77.      Xie D, Li S, Li M, et al. Hydrogenated vacancies lock dislocations in aluminium. Nat Commun 2016;7:13341.  DOI  PubMed  PMC
               78.      Nag S, Curtin WA. Effect of solute-solute interactions on strengthening of random alloys from dilute to high entropy alloys. Acta
                   Mater 2020;200:659-73.  DOI
               79.      Kamachali R, Wang L. Elastic energy of multi-component solid solutions and strain origins of phase stability in high-entropy alloys.
                   Scr Mater 2022;206:114226.  DOI
               80.      Chen YS, Lu H, Liang J, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science
                   2020;367:171-5.  DOI  PubMed
               81.      Gong P, Nutter J, Rivera-Diaz-Del-Castillo PEJ, Rainforth WM. Hydrogen embrittlement through the formation of low-energy
                   dislocation nanostructures in nanoprecipitation-strengthened steels. Sci Adv 2020;6:eabb6152.  DOI  PubMed  PMC
   71   72   73   74   75   76   77   78   79   80   81