Page 75 - Read Online
P. 75

Page 16 of 17         Xiao et al. Microstructures 2023;3:2023006  https://dx.doi.org/10.20517/microstructures.2022.26

                   particles. Acta Mater 2022;236:118110.  DOI
               30.      Chen YS, Haley D, Gerstl SS, et al. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science
                   2017;355:1196-9.  DOI  PubMed
               31.      López Freixes M, Zhou X, Zhao H, et al. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the
                   near-atomic-scale. Nat Commun 2022;13:4290.  DOI  PubMed  PMC
               32.      Chung H, Huh J, Jung W. Intermediate temperature brittleness of Ni based superalloy Nimonic263. Mater Charact 2018;140:9-14.
                   DOI
               33.      Jiang L, Ye X, Cui C, et al. Intermediate temperature embrittlement of one new Ni-26W-6Cr based superalloy for molten salt reactors.
                   Mater Sci Eng A 2016;668:137-45.  DOI
               34.      Yin S, Cheng G, Chang TH, Richter G, Zhu Y, Gao H. Hydrogen embrittlement in metallic nanowires. Nat Commun 2019;10:2004.
                   DOI  PubMed  PMC
               35.      Song J, Curtin WA. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat Mater 2013;12:145-51.  DOI  PubMed
               36.      Bechtle S, Kumar M, Somerday B, Launey M, Ritchie R. Grain-boundary engineering markedly reduces susceptibility to intergranular
                   hydrogen embrittlement in metallic materials. Acta Mater 2009;57:4148-57.  DOI
               37.      Zheng L, Schmitz G, Meng Y, Chellali R, Schlesiger R. Mechanism of intermediate temperature embrittlement of Ni and Ni-based
                   superalloys. Crit Rev Solid State Mater Sci 2012;37:181-214.  DOI
               38.      Wang C, Cao QP, Wang XD, et al. Intermediate temperature brittleness in metallic glasses. Adv Mater 2017;29:1605537.  DOI
                   PubMed
               39.      Cao B, Wei D, Zhang X, et al. Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: the role of
                   heterogeneous strain distribution and environmentally assisted intergranular damage. Mater Today Phys 2022;24:100653.  DOI
               40.      Zheng L, Chellali R, Schlesiger R, et al. Intermediate temperature embrittlement in high-purity Ni and binary Ni(Bi) alloy. Scr Mater
                   2011;65:428-31.  DOI
               41.      Sun B, Lu W, Gault B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Nat Mater 2021;20:1629-
                   34.  DOI  PubMed  PMC
               42.      Zhao H, Chakraborty P, Ponge D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 2022;602:437-41.
                   DOI  PubMed  PMC
               43.      Wang S, Martin ML, Sofronis P, Ohnuki S, Hashimoto N, Robertson IM. Hydrogen-induced intergranular failure of iron. Acta Mater
                   2014;69:275-82.  DOI
               44.      Koyama M, Tasan CC, Akiyama E, Tsuzaki K, Raabe D. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel.
                   Acta Mater 2014;70:174-87.  DOI
               45.      Cotterill P. The hydrogen embrittlement of metals. Prog Mater Sci 1961;9:205-301.  DOI
               46.      Rogers HC. Hydrogen embrittlement of metals. Science 1968;159:3819.  DOI
               47.      Mcmahon C. Hydrogen-induced intergranular fracture of steels. Eng Fract Mech 2001;68:773-88.  DOI
               48.      Pouillier E, Gourgues A, Tanguy D, Busso E. A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement.
                   Int J Plast 2012;34:139-53.  DOI
               49.      Chen XH, Zhuang XQ, Mo JW, et al. Enhanced resistance to hydrogen embrittlement in a CrCoNi-based medium-entropy alloy via
                   grain-boundary decoration of boron. Mater Res Lett 2022;10:278-86.  DOI
               50.      Zhao Y, Lee D, Seok M, et al. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scr Mater
                   2017;135:54-8.  DOI
               51.      Soundararajan CK, Luo H, Raabe D, Li Z. Hydrogen resistance of a 1 GPa strong equiatomic CoCrNi medium entropy alloy. Corros
                   Sci 2020;167:108510.  DOI
               52.      Luo H, Sohn SS, Lu W, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion. Nat Commun
                   2020;11:3081.  DOI
               53.      Lee J, Lee J. The effect of lattice defects induced by cathodic hydrogen charging on the apparent diffusivity of hydrogen in pure iron. J
                   Mater Sci 1987;22:3939-48.  DOI
               54.      Yin Y, Tan Q, Wang T, et al. Eutectic modification of Fe-enriched high-entropy alloys through minor addition of boron. J Mater Sci
                   2020;55:14571-87.  DOI
               55.      Yi J, Zhuang X, He J, He M, Liu W, Wang S. Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-
                   entropy alloy. Corros Sci 2021;189:109628.  DOI
               56.      Li Q, Mo J, Ma S, et al. Defeating hydrogen-induced grain-boundary embrittlement via triggering unusual interfacial segregation in
                   FeCrCoNi-type high-entropy alloys. Acta Mater 2022;241:118410.  DOI
               57.      Li C, Liu X, Dong L, et al. Simultaneously improved mechanical strength and corrosion resistance of Mg-Li-Al alloy by solid solution
                   treatment. Mater Lett 2021;301:130305.  DOI
               58.      Zhou L, Chen K, Chen S, Ding Y, Fan S. Correlation between stress corrosion cracking resistance and grain-boundary precipitates of a
                   new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment. J Alloys Compd
                   2021;850:156717.  DOI
               59.      Pan S, Yuan J, Linsley C, Liu J, Li X. Corrosion behavior of nano-treated AA7075 alloy with TiC and TiB2 nanoparticles. Corros Sci
                   2022;206:110479.  DOI
               60.      Ichii K, Koyama M, Tasan CC, et al. Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys. Scr
   70   71   72   73   74   75   76   77   78   79   80