Page 74 - Read Online
P. 74

Xiao et al. Microstructures 2023;3:2023006  https://dx.doi.org/10.20517/microstructures.2022.26  Page 15 of 17

               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Jiang S, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 2017;544:460-4.
                   DOI  PubMed
               2.       Liu G, Zhang GJ, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater
                   2013;12:344-50.  DOI  PubMed
               3.       Liddicoat PV, Liao XZ, Zhao Y, et al. Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun 2010;1:63.
                   DOI  PubMed
               4.       Nutor RK, Cao Q, Wei R, et al. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range. Sci Adv
                   2021;7:eabi4404.  DOI  PubMed  PMC
               5.       He BB, Hu B, Yen HW, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science
                   2017;357:1029-32.  DOI  PubMed
               6.       Kong H, Jiao Z, Lu J, Liu CT. Low-carbon advanced nanostructured steels: microstructure, mechanical properties, and applications.
                   Sci China Mater 2021;64:1580-97.  DOI
               7.       Kürnsteiner P, Wilms MB, Weisheit A, Gault B, Jägle EA, Raabe D. High-strength damascus steel by additive manufacturing. Nature
                   2020;582:515-9.  DOI  PubMed
               8.       Xiao B, Xu L, Cayron C, Xue J, Sha G, Logé R. Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-
                   martensitic steel. Acta Mater 2020;195:199-208.  DOI
               9.       Zhang Q, Zhu Y, Gao X, Wu Y, Hutchinson C. Training high-strength aluminum alloys to withstand fatigue. Nat Commun
                   2020;11:5198.  DOI  PubMed  PMC
               10.      Wu G, Liu C, Sun L, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity. Nat Commun
                   2019;10:5099.  DOI  PubMed  PMC
               11.      Zhang T, Huang Z, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing.
                   Science 2021;374:478-82.  DOI  PubMed
               12.      Zhang J, Liu Y, Sha G, et al. Designing against phase and property heterogeneities in additively manufactured titanium alloys. Nat
                   Commun 2022;13:4660.  DOI  PubMed  PMC
               13.      Suzuki A, Inui H, Pollock TM. L1 -strengthened cobalt-base superalloys. Annu Rev Mater Res 2015;45:345-68.  DOI
                                         2
               14.      Pollock TM, Dibbern J, Tsunekane M, Zhu J, Suzuki A. New co-based γ-γ′ high-temperature alloys. JOM 2010;62:58-63.  DOI
               15.      Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Cobalt-base high-temperature alloys. Science 2006;312:90-1.  DOI
                   PubMed
               16.      Smith TM, Esser BD, Antolin N, et al. Phase transformation strengthening of high-temperature superalloys. Nat Commun
                   2016;7:13434.  DOI  PubMed  PMC
               17.      Ju J, Shen Z, Kang M, Zhang J, Wang J. On the preferential grain boundary oxidation of a Ni-Co-based superalloy. Corros Sci
                   2022;199:110203.  DOI
               18.      Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature
                   2019;574:223-7.  DOI  PubMed
               19.      Fan L, Yang T, Zhao Y, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures.
                   Nat Commun 2020;11:6240.  DOI  PubMed  PMC
               20.      Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys.
                   Science 2018;362:933-7.  DOI  PubMed
               21.      Wei S, Kim SJ, Kang J, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat Mater
                   2020;19:1175-81.  DOI  PubMed
               22.      Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater 2017;122:448-511.  DOI
               23.      Feng R, Rao Y, Liu C, et al. Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy.
                   Nat Commun 2021;12:3588.  DOI  PubMed  PMC
               24.      Chen S, Aitken ZH, Pattamatta S, et al. Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-
                   range ordering. Nat Commun 2021;12:4953.  DOI  PubMed  PMC
               25.      Xiao B, Luan J, Zhao S, et al. Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice
                   diffusion. Nat Commun 2022;13:4870.  DOI  PubMed  PMC
               26.      Yang T, Zhao Y, Fan L, et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in
                   multicomponent high-entropy alloys. Acta Mater 2020;189:47-59.  DOI
               27.      Li X, Yin J, Zhang J, et al. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review. J Mater Sci
                   Technol 2022;122:20-32.  DOI
               28.      Ronchi  MR.  Hydrogen-induced  transformations  in  metastable  high  entropy  alloys.  Available  from:
                   https://dspace.mit.edu/handle/1721.1/139329 [Last accessed on 16 Nov 2022].
               29.      Xu Y, Toda H, Shimizu K, et al. Suppressed hydrogen embrittlement of high-strength Al alloys by Mn-rich intermetallic compound
   69   70   71   72   73   74   75   76   77   78   79