Page 80 - Read Online
P. 80

Yan et al. Soft Sci. 2025, 5, 8  https://dx.doi.org/10.20517/ss.2024.66         Page 29 of 34

               Financial support and sponsorship
               This work was supported by the National Natural Science Foundation of China (No. U20A20299) and
               Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515011985).


               Conflicts of interest
               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2025.

               REFERENCES
               1.       Yan, R.; Huang, Z.; Chen, Y.; Zhang, L.; Sheng, X. Phase change composite based on lignin carbon aerogel/nickel foam dual-
                    network for multisource energy harvesting and superb EMI shielding. Int. J. Biol. Macromol. 2024, 277, 134233.  DOI
               2.       Wei, C.; Shi, L.; Li, M.; et al. Hollow engineering of sandwich NC@Co/NC@MnO  composites toward strong wideband
                                                                               2
                    electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194-203.  DOI
               3.       Yan, R.; Huang, Z.; Zhang, L.; Chen, Y.; Sheng, X. Cellulose-reinforced foam-based phase change composites for multi-source
                    driven energy storage and EMI shielding. Compos. Commun. 2024, 51, 102047.  DOI
               4.       Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti C T  hollow microspheres on thermally conductive polyimide
                                                               3  2  x
                    composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, e2211642.  DOI
               5.       Isari, A. A.; Ghaffarkhah, A.; Hashemi, S. A.; Wuttke, S.; Arjmand, M. Structural design for EMI shielding: from underlying
                    mechanisms to common pitfalls. Adv. Mater. 2024, 36, e2310683.  DOI  PubMed
               6.       Yun, T.; Kim, H.; Iqbal, A.; et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, e1906769.  DOI
               7.       Park, B.; Hwang, S.; Lee, H.; et al. Absorption-dominant electromagnetic interference (EMI) shielding across multiple mmwave
                    bands using conductive patterned magnetic composite and double-walled carbon nanotube film. Adv. Funct. Materials. 2024, 34,
                    2406197.  DOI
               8.       Liu, J.; Nicolosi, V. Electrically insulating electromagnetic interference shielding materials: a perspective. Adv. Funct. Materials.
                    2024, 2407439.  DOI
               9.       Khan, T.; Khalid, M.; Andrew, J.; Ali, M.; Zheng, L.; Umer, R. Co-cured GNP films with liquid thermoplastic/glass fiber composites
                    for superior EMI shielding and impact properties for space applications. Compos. Commun. 2023, 44, 101767.  DOI
               10.       Prabagar,  C.  J.;  Anand,  S.;  Vu,  M.  C.;  et  al.  Thermally  insulating  carbon  nanotubes  and  copper  ferrite  based  porous
                    polydimethylsiloxane foams for absorption-dominant electromagnetic interference shielding performance. Compos. Commun. 2023,
                    42, 101691.  DOI
               11.       Zhong, X.; He, M.; Zhang, C.; Guo, Y.; Hu, J.; Gu, J. Heterostructured BN@Co-C@C endowing polyester composites excellent
                    thermal conductivity and microwave absorption at C band. Adv. Funct. Materials. 2024, 34, 2313544.  DOI
               12.       Jia, X.; Li, Y.; Shen, B.; Zheng, W. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials
                    with low reflectivity: a review. Compos. Part. B. Eng. 2022, 233, 109652.  DOI
               13.       Liu, J.; Yu, M.; Yu, Z.; Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater.
                    Today. 2023, 66, 245-72.  DOI
               14.       Wang, L.; Ma, Z.; Zhang, Y.; Chen, L.; Cao, D.; Gu, J. Polymer-based EMI shielding composites with 3D conductive networks: a
                    mini-review. SusMat 2021, 1, 413-31.  DOI
               15.       Tian, K.; Hu, D.; Wei, Q.; Fu, Q.; Deng, H. Recent progress on multifunctional electromagnetic interference shielding polymer
                    composites. J. Mater. Sci. Technol. 2023, 134, 106-31.  DOI
               16.       Wu, Y.; Dong, S.; Li, X.; et al. A stretchable all-nanofiber iontronic pressure sensor. Soft. Sci. 2023, 3, 33.  DOI
               17.       Zhang, D.; Sia, S. A.; Solco, S. F. D.; Xu, J.; Suwardi, A. Energy harvesting through thermoelectrics: topological designs and
                    materials jetting technology. Soft. Sci. 2023, 3, 1.  DOI
               18.       Sushmita, K.; Madras, G.; Bose, S. Polymer nanocomposites containing semiconductors as advanced materials for EMI shielding.
                    ACS. Omega. 2020, 5, 4705-18.  DOI  PubMed  PMC
               19.       Sahu, K. R.; De, U. Polymer composites for flexible electromagnetic shields. Macromol. Symp. 2018, 381, 1800097.  DOI
               20.       Zhang, W.; Zhang, Y.; Yan, X.; Hong, Y.; Yang, Z. Challenges and progress of chemical modification in piezoelectric composites
   75   76   77   78   79   80   81   82   83   84   85