Page 84 - Read Online
P. 84
Yan et al. Soft Sci. 2025, 5, 8 https://dx.doi.org/10.20517/ss.2024.66 Page 33 of 34
carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part. B. Eng. 2019, 160, 131-9. DOI
109. Lee, J. H.; Kim, Y. S.; Ru, H. J.; Lee, S. Y.; Park, S. J. Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for
absorption-dominated electromagnetic interference shielding. Nanomicro. Lett. 2022, 14, 188. DOI PubMed PMC
110. Shen, R.; Lian, P.; Cao, Y.; Chen, Y.; Zhang, L.; Sheng, X. All lignin-based sponge encapsulated phase change composites with
enhanced solar-thermal conversion capability and satisfactory shape stability for thermal energy storage. J. Energy. Storage. 2022,
54, 105338. DOI
111. Han, Y.; Ruan, K.; Gu, J. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver
nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. Engl. 2023, 62, e202216093. DOI
112. Su, J.; Lin, J.; Cao, Y.; et al. Experimental investigation and numerical simulation on microwave thermal conversion storage
properties of multi-level conductive porous phase change materials and its multifunctional applications. Appl. Therm. Eng. 2024, 253,
123774. DOI
113. Chen, H.; Ma, Y.; Sheng, X.; Chen, Y. Achieving heat storage coatings from ethylene vinyl acetate copolymers and phase change
nano-capsules with excellent flame-retardant and thermal comfort performances. Prog. Org. Coat. 2024, 192, 108478. DOI
114. Ma, Y.; Wang, H.; Zhang, L.; Sheng, X.; Chen, Y. Flexible phase change composite films with improved thermal conductivity and
superb thermal reliability for electronic chip thermal management. Compos. Part. A. Appl. Sci. Manuf. 2022, 163, 107203. DOI
115. Goeke, J.; Schwamborn, E. Phase change material in spherical capsules for hybrid thermal storage. Chem. Ing. Tech. 2020, 92, 1098-
108. DOI
116. Latibari S, Mehrali M, Mehrali M, Mahlia TM, Metselaar HS. Facile preparation of carbon microcapsules containing phase-change
material with enhanced thermal properties. ScientificWorldJournal 2014, 2014, 379582. DOI PubMed PMC
117. Yin, G.; Díaz, P. J. L.; Wang, D. Fully bio-based Poly (Glycerol-Itaconic acid) as supporter for PEG based form stable phase change
materials. Compos. Commun. 2021, 27, 100893. DOI
118. Mert, H. H. PolyHIPE composite based-form stable phase change material for thermal energy storage. Int. J. Energy. Res. 2020, 44,
6583-94. DOI
119. Maqbool, M.; Aftab, W.; Bashir, A.; Usman, A.; Guo, H.; Bai, S. Engineering of polymer-based materials for thermal management
solutions. Compos. Commun. 2022, 29, 101048. DOI
120. Cao, Y.; Li, W.; Huang, D.; et al. One-step construction of novel phase change composites supported by a biomass/MXene gel
network for efficient thermal energy storage. Sol. Energy. Mater. Sol. Cells. 2022, 241, 111729. DOI
121. Alva, G.; Lin, Y.; Liu, L.; Fang, G. Synthesis, characterization and applications of microencapsulated phase change materials in
thermal energy storage: a review. Energy. Build. 2017, 144, 276-94. DOI
122. Shen, J.; Ma, Y.; Zhou, F.; Sheng, X.; Chen, Y. Thermophysical properties investigation of phase change microcapsules with low
supercooling and high energy storage capability: potential for efficient solar energy thermal management. J. Mater. Sci. Technol.
2024, 191, 199-208. DOI
123. Ma, Y.; Shen, J.; Li, T.; Sheng, X.; Chen, Y. A “net-ball” structure fiber membrane with electro-/photo-thermal heating and phase
change synchronous temperature regulation capacity via electrospinning. Sol. Energy. Mater. Sol. Cells. 2024, 276, 113078. DOI
124. Lin, P.; Xie, J.; He, Y.; et al. MXene aerogel-based phase change materials toward solar energy conversion. Sol. Energy. Mater. Sol.
Cells. 2020, 206, 110229. DOI
125. Luo, Y.; Xie, Y.; Jiang, H.; et al. Flame-retardant and form-stable phase change composites based on MXene with high
thermostability and thermal conductivity for thermal energy storage. Chem. Eng. J. 2021, 420, 130466. DOI
126. Liu, Y.; Tang, Z.; Huang, Z.; et al. Flexible phase change composites based on hierarchically porous polypyrrole scaffold for broad-
band solar absorption and efficient solar-thermal-electric energy conversion. Compos. Sci. Technol. 2024, 250, 110519. DOI
127. Cheng, P.; Gao, H.; Chen, X.; et al. Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl
alcohol). Chem. Eng. J. 2020, 397, 125330. DOI
128. Chen, X.; Gao, H.; Hai, G.; et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material
composites for thermal energy harvesting and thermotherapy. Energy. Storage. Mater. 2020, 26, 129-37. DOI
129. Zhao, X.; Lei, K.; Wang, S.; Wang, B.; Huang, L.; Zou, D. A shape-memory, room-temperature flexible phase change material based
on PA/TPEE/EG for battery thermal management. Chem. Eng. J. 2023, 463, 142514. DOI
130. Wu, W.; Wu, W.; Wang, S. Form-stable and thermally induced flexible composite phase change material for thermal energy storage
and thermal management applications. Appl. Energy. 2019, 236, 10-21. DOI
131. Wu, T.; Hu, Y.; Rong, H.; Wang, C. SEBS-based composite phase change material with thermal shape memory for thermal
management applications. Energy 2021, 221, 119900. DOI
132. Wu, S.; Li, T.; Wu, M.; et al. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite
nanoplatelet-based dual networks for efficient thermal management. J. Mater. Chem. A. 2020, 8, 20011-20. DOI
133. Wu, M.; Li, T.; Wang, P.; Wu, S.; Wang, R.; Lin, J. Dual-encapsulated highly conductive and liquid-free phase change composites
enabled by polyurethane/graphite nanoplatelets hybrid networks for efficient energy storage and thermal management. Small 2022,
18, e2105647. DOI
134. Huang, Y.; Luo, W.; Chen, W.; et al. Self-healing, adaptive and shape memory polymer-based thermal interface phase change
materials via boron ester cross-linking. Chem. Eng. J. 2024, 496, 153789. DOI
135. Zhang, S.; Cheng, B.; Jia, Z.; et al. The art of framework construction: hollow-structured materials toward high-efficiency
electromagnetic wave absorption. Adv. Compos. Hybrid. Mater. 2022, 5, 1658-98. DOI

