Page 83 - Read Online
P. 83
Page 32 of 34 Yan et al. Soft Sci. 2025, 5, 8 https://dx.doi.org/10.20517/ss.2024.66
2022, 155, 106853. DOI
81. Zheng, J.; Deng, Y.; Liu, Y.; et al. Paraffin/polyvinyl alcohol/MXene flexible phase change composite films for thermal management
applications. Chem. Eng. J. 2023, 453, 139727. DOI
82. Zeng, Z. H.; Wu, N.; Wei, J. J.; et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional
electromagnetic interference shielding. Nanomicro. Lett. 2022, 14, 59. DOI PubMed PMC
83. Liu, J.; Zhang, H. B.; Sun, R.; et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-
interference shielding. Adv. Mater. 2017, 29, 1702367. DOI
84. Zhang, Y.; Ruan, K.; Gu, J. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent
thermal conductivities. Small 2021, 17, e2101951. DOI PubMed
85. Wu, L.; Li, Y.; Wang, B.; et al. Electroless Ag-plated sponges by tunable deposition onto cellulose-derived templates for ultra-high
electromagnetic interference shielding. Mater. Design. 2018, 159, 47-56. DOI
86. Tan, Y.; Li, J.; Gao, Y.; Li, J.; Guo, S.; Wang, M. A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for
ultrahigh electromagnetic interference shielding. Appl. Surf. Sci. 2018, 458, 236-44. DOI
87. Xing, D.; Lu, L.; Xie, Y.; Tang, Y.; Teh, K. S. Highly flexible and ultra-thin carbon-fabric/Ag/waterborne polyurethane film for ultra-
efficient EMI shielding. Mater. Design. 2020, 185, 108227. DOI
88. Zhao, B.; Wang, S.; Zhao, C.; et al. Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride)
composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon 2018, 127, 469-78. DOI
89. Liang, C.; Ruan, K.; Zhang, Y.; Gu, J. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films
with excellent thermal management and joule heating performances. ACS. Appl. Mater. Interfaces. 2020, 12, 18023-31. DOI
PubMed
90. Cheng, M.; Ying, M.; Zhao, R.; et al. Transparent and flexible electromagnetic interference shielding materials by constructing
sandwich AgNW@MXene/wood composites. ACS. Nano. 2022, 16, 16996-7007. DOI
91. Cheng, H.; Pan, Y.; Chen, Q.; et al. Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific
EMI shielding and high heat dissipation. Adv. Compos. Hybrid. Mater. 2021, 4, 505-13. DOI
92. Madani, M. Conducting carbon black filled NR/IIR blend vulcanizates: assessment of the dependence of physical and mechanical
properties and electromagnetic interference shielding on variation of filler loading. J. Polym. Res. 2010, 17, 53-62. DOI
93. Tibbetts, G.; Lake, M.; Strong, K.; Rice, B. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer
composites. Compos. Sci. Technol. 2007, 67, 1709-18. DOI
94. Nayak, L.; Khastgir, D.; Chaki, T. K. A mechanistic study on electromagnetic shielding effectiveness of polysulfone/carbon
nanofibers nanocomposites. J. Mater. Sci. 2013, 48, 1492-502. DOI
95. Liang, J.; Wang, Y.; Huang, Y.; et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009, 47, 922-5.
DOI
96. Hsiao, S.; Ma, C. M.; Tien, H.; et al. Using a non-covalent modification to prepare a high electromagnetic interference shielding
performance graphene nanosheet/water-borne polyurethane composite. Carbon 2013, 60, 57-66. DOI
97. Song, W.; Cao, M.; Lu, M.; et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic
interference shielding. Carbon 2014, 66, 67-76. DOI
98. Song, P.; Liu, B.; Liang, C.; et al. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites
with outstanding EMI shielding performances and excellent thermal conductivities. Nanomicro. Lett. 2021, 13, 91. DOI PubMed
PMC
99. Tahalyani, J.; Akhtar, M. J.; Kar, K. K. Flexible, stretchable and lightweight polyurethane and graphene nanoplatelets nanocomposite
for high performance EMI shielding application. Mater. Today. Commun. 2022, 33, 104586. DOI
100. Zeng, Z.; Chen, M.; Jin, H.; et al. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-
performance electromagnetic interference shielding. Carbon 2016, 96, 768-77. DOI
101. Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative study of electromagnetic interference shielding properties
of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 2012, 50, 5126-34.
DOI
102. Gupta, A.; Choudhary, V. Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon
nanotube composites. Compos. Sci. Technol. 2011, 71, 1563-8. DOI
103. Chen, M.; Zhang, L.; Duan, S.; et al. Highly conductive and flexible polymer composites with improved mechanical and
electromagnetic interference shielding performances. Nanoscale 2014, 6, 3796-803. DOI
104. Jia, L.; Li, Y.; Yan, D. Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 2017,
121, 267-73. DOI
105. Kong, L.; Yin, X.; Xu, H.; et al. Powerful absorbing and lightweight electromagnetic shielding CNTs/rGO composite. Carbon 2019,
145, 61-6. DOI
106. Kumar, R.; Sahoo, S.; Joanni, E.; et al. Recent progress on carbon-based composite materials for microwave electromagnetic
interference shielding. Carbon 2021, 177, 304-31. DOI
107. Zare, Y.; Rhee, K. Y.; Park, S. A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites
based on Halpin-Tsai model. Results. Phys. 2019, 14, 102406. DOI
108. Agrawal, P. R.; Kumar, R.; Teotia, S.; Kumari, S.; Mondal, D.; Dhakate, S. R. Lightweight, high electrical and thermal conducting

