Page 82 - Read Online
P. 82

Yan et al. Soft Sci. 2025, 5, 8  https://dx.doi.org/10.20517/ss.2024.66         Page 31 of 34

               51.       Weng, M.; Lin, J.; Yang, Y.; et al. MXene-based phase change materials for multi-source driven energy storage, conversion and
                    applications. Sol. Energy. Mater. Sol. Cells. 2024, 272, 112915.  DOI
               52.       Lian, P.; Yan, R.; Wu, Z.; et al. Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based
                    composite phase change materials for building thermal energy storage. Adv. Compos. Hybrid. Mater. 2023, 6, 655.  DOI
               53.       Han, Y.; Ruan, K.; He, X.; et al. Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared
                    camouflages and information encryption. Angew. Chem. Int. Ed. 2024, 136, e202401538.  DOI
               54.       Wang, S.; Feng, D.; Zhang, Z.; et al. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-
                    CNTs networks via self-sacrificing template method. Chin. J. Polym. Sci. 2024, 42, 897-906.  DOI
               55.       Ma, T.; Zhang, Y.; Ruan, K.; et al. Advances in 3D printing for polymer composites: a review. InfoMat 2024, 6, e12568.  DOI
               56.       Zhang, D.; Liang, S.; Chai, J.; et al. Highly effective shielding of electromagnetic waves in MoS  nanosheets synthesized by a
                                                                                      2
                    hydrothermal method. J. Phys. Chem. Solids. 2019, 134, 77-82.  DOI
               57.       Wang, L.; Bai, X.; Wang, M. Facile preparation, characterization and highly effective microwave absorption performance of porous α
                    -Fe O  nanorod–graphene composites. J. Mater. Sci. Mater. Electron. 2018, 29, 3381-90.  DOI
                      2  3
               58.       Zhang, S.; Jia, Z.; Cheng, B.; Zhao, Z.; Lu, F.; Wu, G. Recent progress of perovskite oxides and their hybrids for electromagnetic
                    wave absorption: a mini-review. Adv. Compos. Hybrid. Mater. 2022, 5, 2440-60.  DOI
               59.       He, X.; Cui, C.; Chen, Y.; Zhang, L.; Sheng, X.; Xie, D. MXene and polymer collision: sparking the future of high-performance
                    multifunctional coatings. Adv. Funct. Materials. 2024, 34, 2409675.  DOI
               60.       Chen, Y.; Meng, Y.; Zhang, J.; et al. Leakage proof, flame-retardant, and electromagnetic shield wood morphology genetic composite
                    phase change materials for solar thermal energy harvesting. Nanomicro. Lett. 2024, 16, 196.  DOI  PubMed  PMC
               61.       He, M.; Hu, J.; Yan, H.; et al. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency
                    microwave absorption and high thermal conductivity. Adv. Funct. Materials.2024, 2316691.  DOI
               62.       Ruan, K.; Shi, X.; Zhang, Y.; Guo, Y.; Zhong, X.; Gu, J. Electric-field-induced alignment of functionalized carbon nanotubes inside
                    thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. Engl. 2023, 62, e202309010.  DOI
               63.       Zhang, W.; Wang, J.; Wei, L.; Jin, H.; Bao, Y.; Ma, J. Preparation and application of functional polymer-based electromagnetic
                    shielding materials. Progress. Chem. 2023, 35, 1065-76.  DOI
               64.       Cao, X.; Liu, X.; Zhu, J.; Jia, Z.; Liu, J.; Wu, G. Optimal particle distribution induced interfacial polarization in hollow double-shell
                    composites for electromagnetic waves absorption performance. J. Colloid. Interface. Sci. 2023, 634, 268-78.  DOI
               65.       Chai, J.; Cheng, J.; Zhang, D.; et al. Enhancing electromagnetic wave absorption performance of Co O  nanoparticles functionalized
                                                                                     3
                                                                                       4
                    MoS  nanosheets. J. Alloys. Compd. 2020, 829, 154531.  DOI
                       2
               66.       Zhang, H.; Liu, T.; Huang, Z.; et al. Engineering flexible and green electromagnetic interference shielding materials with high
                    performance through modulating WS  nanosheets on carbon fibers. J. Materiomics. 2022, 8, 327-34.  DOI
                                            2
               67.       Gao, Z.; Song, Y.; Zhang, S.; et al. Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging
                    metal-organic frameworks. J. Colloid. Interface. Sci. 2021, 600, 288-98.  DOI
               68.       Li, Y.; Xue, B.; Yang, S.; Cheng, Z.; Xie, L.; Zheng, Q. Flexible multilayered films consisting of alternating nanofibrillated
                    cellulose/Fe O  and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem. Eng. J. 2021, 410,
                             4
                            3
                    128356.  DOI
               69.       Gao, Z.; Zhao, Z.; Lan, D.; Kou, K.; Zhang, J.; Wu, H. Accessory ligand strategies for hexacyanometallate networks deriving
                    perovskite polycrystalline electromagnetic absorbents. J. Mater. Sci. Technol. 2021, 82, 69-79.  DOI
               70.       Lan, D.; Li, H.; Wang, M.; et al. Recent advances in construction strategies and multifunctional properties of flexible electromagnetic
                    wave absorbing materials. Mater. Res. Bull. 2024, 171, 112630.  DOI
               71.       Lin, X.; Han, M. Recent progress in soft electronics and robotics based on magnetic nanomaterials. Soft. Sci. 2023, 3, 14.  DOI
               72.       Zhang, H.; Sun, K.; Sun, K.; Chen, L.; Wu, G. Core–shell Ni Sn @C particles anchored on 3D N-doped porous carbon skeleton for
                                                            3  2
                    modulated electromagnetic wave absorption. JMater. Sci. Technol. 2023, 158, 242-52.  DOI
               73.       Zhou, Z.; Zhu, Q.; Liu, Y.; Zhang, Y.; Jia, Z.; Wu, G. Construction of self-assembly based tunable absorber: lightweight,
                    hydrophobic and self-cleaning properties. Nanomicro. Lett. 2023, 15, 137.  DOI  PubMed  PMC
               74.       Xu, H.; Yin, X.; Zhu, M.; et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for
                    achieving full X band microwave absorption. Carbon 2019, 142, 346-53.  DOI
               75.       Luo, J.; Zhang, K.; Cheng, M.; Gu, M.; Sun, X. MoS  spheres decorated on hollow porous ZnO microspheres with strong wideband
                                                       2
                    microwave absorption. Chem. Eng. J. 2020, 380, 122625.  DOI
               76.       Wang, Y.; Haidry, A. A.; Liu, Y.; et al. Enhanced electromagnetic wave absorption using bimetallic MOFs-derived TiO /Co/C
                                                                                                     2
                    heterostructures. Carbon 2024, 216, 118497.  DOI
               77.       Salas, A.; Pazniak, H.; Gonzalez-julian, J.; et al. Development of polymeric/MXenes composites towards 3D printable electronics.
                    Compos. Part. B. Eng. 2023, 263, 110854.  DOI
               78.       Jin, X.; Wang, J.; Dai, L.; et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic
                    interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.  DOI
               79.       Bai, S.; Guo, X.; Zhang, X.; Zhao, X.; Yang, H. Ti C T  MXene-AgNW composite flexible transparent conductive films for EMI
                                                      3  2  x
                    shielding. Compos. Part. A. Appl. Sci. Manuf. 2021, 149, 106545.  DOI
               80.       Wang, H.; Deng, Y.; Liu, Y.; et al. In situ preparation of light-driven cellulose-Mxene aerogels based composite phase change
                    materials with simultaneously enhanced light-to-heat conversion, heat transfer and heat storage. Compos. Part. A. Appl. Sci. Manuf.
   77   78   79   80   81   82   83   84   85   86   87