Page 82 - Read Online
P. 82
Yan et al. Soft Sci. 2025, 5, 8 https://dx.doi.org/10.20517/ss.2024.66 Page 31 of 34
51. Weng, M.; Lin, J.; Yang, Y.; et al. MXene-based phase change materials for multi-source driven energy storage, conversion and
applications. Sol. Energy. Mater. Sol. Cells. 2024, 272, 112915. DOI
52. Lian, P.; Yan, R.; Wu, Z.; et al. Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based
composite phase change materials for building thermal energy storage. Adv. Compos. Hybrid. Mater. 2023, 6, 655. DOI
53. Han, Y.; Ruan, K.; He, X.; et al. Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared
camouflages and information encryption. Angew. Chem. Int. Ed. 2024, 136, e202401538. DOI
54. Wang, S.; Feng, D.; Zhang, Z.; et al. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-
CNTs networks via self-sacrificing template method. Chin. J. Polym. Sci. 2024, 42, 897-906. DOI
55. Ma, T.; Zhang, Y.; Ruan, K.; et al. Advances in 3D printing for polymer composites: a review. InfoMat 2024, 6, e12568. DOI
56. Zhang, D.; Liang, S.; Chai, J.; et al. Highly effective shielding of electromagnetic waves in MoS nanosheets synthesized by a
2
hydrothermal method. J. Phys. Chem. Solids. 2019, 134, 77-82. DOI
57. Wang, L.; Bai, X.; Wang, M. Facile preparation, characterization and highly effective microwave absorption performance of porous α
-Fe O nanorod–graphene composites. J. Mater. Sci. Mater. Electron. 2018, 29, 3381-90. DOI
2 3
58. Zhang, S.; Jia, Z.; Cheng, B.; Zhao, Z.; Lu, F.; Wu, G. Recent progress of perovskite oxides and their hybrids for electromagnetic
wave absorption: a mini-review. Adv. Compos. Hybrid. Mater. 2022, 5, 2440-60. DOI
59. He, X.; Cui, C.; Chen, Y.; Zhang, L.; Sheng, X.; Xie, D. MXene and polymer collision: sparking the future of high-performance
multifunctional coatings. Adv. Funct. Materials. 2024, 34, 2409675. DOI
60. Chen, Y.; Meng, Y.; Zhang, J.; et al. Leakage proof, flame-retardant, and electromagnetic shield wood morphology genetic composite
phase change materials for solar thermal energy harvesting. Nanomicro. Lett. 2024, 16, 196. DOI PubMed PMC
61. He, M.; Hu, J.; Yan, H.; et al. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency
microwave absorption and high thermal conductivity. Adv. Funct. Materials.2024, 2316691. DOI
62. Ruan, K.; Shi, X.; Zhang, Y.; Guo, Y.; Zhong, X.; Gu, J. Electric-field-induced alignment of functionalized carbon nanotubes inside
thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. Engl. 2023, 62, e202309010. DOI
63. Zhang, W.; Wang, J.; Wei, L.; Jin, H.; Bao, Y.; Ma, J. Preparation and application of functional polymer-based electromagnetic
shielding materials. Progress. Chem. 2023, 35, 1065-76. DOI
64. Cao, X.; Liu, X.; Zhu, J.; Jia, Z.; Liu, J.; Wu, G. Optimal particle distribution induced interfacial polarization in hollow double-shell
composites for electromagnetic waves absorption performance. J. Colloid. Interface. Sci. 2023, 634, 268-78. DOI
65. Chai, J.; Cheng, J.; Zhang, D.; et al. Enhancing electromagnetic wave absorption performance of Co O nanoparticles functionalized
3
4
MoS nanosheets. J. Alloys. Compd. 2020, 829, 154531. DOI
2
66. Zhang, H.; Liu, T.; Huang, Z.; et al. Engineering flexible and green electromagnetic interference shielding materials with high
performance through modulating WS nanosheets on carbon fibers. J. Materiomics. 2022, 8, 327-34. DOI
2
67. Gao, Z.; Song, Y.; Zhang, S.; et al. Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging
metal-organic frameworks. J. Colloid. Interface. Sci. 2021, 600, 288-98. DOI
68. Li, Y.; Xue, B.; Yang, S.; Cheng, Z.; Xie, L.; Zheng, Q. Flexible multilayered films consisting of alternating nanofibrillated
cellulose/Fe O and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem. Eng. J. 2021, 410,
4
3
128356. DOI
69. Gao, Z.; Zhao, Z.; Lan, D.; Kou, K.; Zhang, J.; Wu, H. Accessory ligand strategies for hexacyanometallate networks deriving
perovskite polycrystalline electromagnetic absorbents. J. Mater. Sci. Technol. 2021, 82, 69-79. DOI
70. Lan, D.; Li, H.; Wang, M.; et al. Recent advances in construction strategies and multifunctional properties of flexible electromagnetic
wave absorbing materials. Mater. Res. Bull. 2024, 171, 112630. DOI
71. Lin, X.; Han, M. Recent progress in soft electronics and robotics based on magnetic nanomaterials. Soft. Sci. 2023, 3, 14. DOI
72. Zhang, H.; Sun, K.; Sun, K.; Chen, L.; Wu, G. Core–shell Ni Sn @C particles anchored on 3D N-doped porous carbon skeleton for
3 2
modulated electromagnetic wave absorption. JMater. Sci. Technol. 2023, 158, 242-52. DOI
73. Zhou, Z.; Zhu, Q.; Liu, Y.; Zhang, Y.; Jia, Z.; Wu, G. Construction of self-assembly based tunable absorber: lightweight,
hydrophobic and self-cleaning properties. Nanomicro. Lett. 2023, 15, 137. DOI PubMed PMC
74. Xu, H.; Yin, X.; Zhu, M.; et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for
achieving full X band microwave absorption. Carbon 2019, 142, 346-53. DOI
75. Luo, J.; Zhang, K.; Cheng, M.; Gu, M.; Sun, X. MoS spheres decorated on hollow porous ZnO microspheres with strong wideband
2
microwave absorption. Chem. Eng. J. 2020, 380, 122625. DOI
76. Wang, Y.; Haidry, A. A.; Liu, Y.; et al. Enhanced electromagnetic wave absorption using bimetallic MOFs-derived TiO /Co/C
2
heterostructures. Carbon 2024, 216, 118497. DOI
77. Salas, A.; Pazniak, H.; Gonzalez-julian, J.; et al. Development of polymeric/MXenes composites towards 3D printable electronics.
Compos. Part. B. Eng. 2023, 263, 110854. DOI
78. Jin, X.; Wang, J.; Dai, L.; et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic
interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475. DOI
79. Bai, S.; Guo, X.; Zhang, X.; Zhao, X.; Yang, H. Ti C T MXene-AgNW composite flexible transparent conductive films for EMI
3 2 x
shielding. Compos. Part. A. Appl. Sci. Manuf. 2021, 149, 106545. DOI
80. Wang, H.; Deng, Y.; Liu, Y.; et al. In situ preparation of light-driven cellulose-Mxene aerogels based composite phase change
materials with simultaneously enhanced light-to-heat conversion, heat transfer and heat storage. Compos. Part. A. Appl. Sci. Manuf.

