Page 141 - Read Online
P. 141
Xu et al. Soft Sci. 2025, 5, 43 https://dx.doi.org/10.20517/ss.2025.63 Page 15 of 16
DOI
40. Murali, G.; Reddy, M. J. K.; Park, Y. H.; et al. A review on MXene synthesis, stability, and photocatalytic applications. ACS. Nano.
2022, 16, 13370-429. DOI
41. Xie, W.; Tang, Q.; Xie, J.; et al. Organohydrogel-based transparent terahertz absorber via ionic conduction loss. Nat. Commun. 2024,
15, 38. DOI PubMed PMC
42. Jiang, H.; Yuan, B.; Guo, H.; et al. Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with
improved wettability. Nat. Commun. 2024, 15, 6138. DOI PubMed PMC
43. Zhao, S.; Zhang, H. B.; Luo, J. Q.; et al. Highly electrically conductive three-dimensional Ti C T MXene/reduced graphene oxide
3 2 c
hybrid aerogels with excellent electromagnetic interference shielding performances. ACS. Nano. 2018, 12, 11193-202. DOI
44. Wu, X.; Wang, Z.; Yu, M.; Xiu, L.; Qiu, J. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids
with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 2017, 29, 1607017. DOI
45. Ma, T. B.; Ma, H.; Ruan, K. P.; et al. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding
performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248-55. DOI
46. Lin, Y.; Tang, L.; Cheng, L.; et al. Mechanically strong PBO wave-transparent composite papers with excellent UV resistance and
ultra-low dielectric constant. J. Mate. Sci. Technol. 2025, 225, 151-8. DOI
47. Lin, Y.; Yong, Z.; Luo, X.; et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide
photodetectors in a visible-light integrated photonics platform. Nat. Commun. 2022, 13, 6362. DOI PubMed PMC
48. Bauters, J. F.; Heck, M. J. R.; John, D.; et al. Ultra-low-loss high-aspect-ratio Si N waveguides. Opt. Express. 2011, 19, 3163. DOI
3 4
49. Ding, M.; Zhao, D.; Wei, R.; et al. Multifunctional elastomeric composites based on 3D graphene porous materials. Exploration.
(Beijing). 2023, 4, 20230057. DOI
50. Wang, H.; Zhao, J.; Wang, Z.; Liu, P. Bird-nest-like multi-interfacial MXene@SiC NWs @Co/C hybrids with enhanced electromagnetic
wave absorption. ACS. Appl. Mater. Interfaces. 2023, 15, 4580-90. DOI
51. Wang, L.; Chen, Z.; Wang, X.; et al. Fe O @C 3D foam for strong low-frequency microwave absorption. J. Materiomics. 2023, 9,
3
4
148-56. DOI
52. Wang, D.; Zhou, C.; Filatov, A. S.; et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science.
2023, 379, 1242-7. DOI
53. Chen, X.; Park, Y. J.; Kang, M.; et al. CVD-grown monolayer MoS in bioabsorbable electronics and biosensors. Nat. Commun. 2018,
2
9, 1690. DOI PubMed PMC
54. Wang, W.; Chen, S. J.; Chen, W.; Duan, W.; Lai, J. Z.; Sagoe-crentsil, K. Damage-tolerant material design motif derived from
asymmetrical rotation. Nat. Commun. 2022, 13, 1289. DOI PubMed PMC
55. Zhang, J.; Liu, Z.; Han, M.; Zhang, J.; Tang, Y.; Gu, J. Block copolymer functionalized quartz fibers/cyanate ester wave-transparent
laminated composites. J. Mater. Sci. Technol. 2023, 139, 189-97. DOI
56. Ma, X.; Zhang, H.; Guo, Y.; et al. Enhancing thermal conductivity in polysiloxane composites through synergistic design of liquid
crystals and boron nitride nanosheets. J. Mater. Sci. Technol. 2025, 231, 54-61. DOI
57. Liu, X.; Zhang, L.; Liu, Y.; Ye, F.; Yin, X. Thermodynamic calculations on the chemical vapor deposition of Si-C-N from the
SiCl -NH -C H -H -Ar system. Ceram. Int. 2013, 39, 3971-7. DOI
4
3
6
2
3
58. Gao, C.; He, X.; Ye, F.; Wang, S.; Zhang, G. Electromagnetic wave absorption and mechanical properties of CNTs@GN@Fe O /PU
4
3
multilayer composite foam. Materials. (Basel). 2021, 14, 7244. DOI PubMed PMC
59. Pang, X.; Zhou, X.; Gao, Y.; Qian, Y.; Lyu, L. Optimization of electromagnetic absorption properties based on graphene, carbon
nanotubes, and multidimensional composites. Polym. Compos. 2024, 45, 8414-25. DOI
60. Cai, H.; Lin, Z.; Gao, L.; Feng, C.; Tang, R. Non-magnetic hollow ZnO/C fabricated by a novel ZnO self-sacrificial template hollow
engineering for efficient microwave absorption. J. Mater. Sci. 2024, 59, 5371-86. DOI
61. Pan, Y.; Cheng, L.; Lan, D.; et al. Conductor-semiconductor heterointerface polarization enhancement for superior electromagnetic
wave absorption. J. Mater. Sci. Technol. 2026, 244, 129-41. DOI
62. Gao, X.; Wang, X.; Cai, J.; et al. CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave
absorbing. Carbon. 2023, 211, 118083. DOI
63. Ma, W.; He, P.; Wang, T.; et al. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe O @C
3
4
microspheres. Chem. Eng. J. 2021, 420, 129875. DOI
64. Liu, X. H.; Cai, J. N.; Zhang, J. Y.; et al. Surface-state-constrained topological insulator Bi Te nanorods for electromagnetic wave
2 3
trapping and conversion into electricity. J. Mater. Sci. Technol. 2026, 244, 149-55. DOI
65. Hou, Z. L.; Gao, X.; Zhang, J.; Wang, G. A perspective on impedance matching and resonance absorption mechanism for
electromagnetic wave absorbing. Carbon. 2024, 222, 118935. DOI
66. Zhang, X.; Xu, L.; Zhou, J.; et al. Liquid metal-derived two-dimensional layered double oxide nanoplatelet-based coatings for
electromagnetic wave absorption. ACS. Appl. Nano. Mater. 2021, 4, 9200-12. DOI
67. Gu, W.; Luo, Z.; Wang, J.; et al. Multifunctional lightweight rGO/polyimide hybrid aerogels for highly efficient infrared-radar-
acoustic compatibility via heterogeneous interface engineering strategies. J. Mater. Sci. Technol. 2026, 243, 102-14. DOI
68. Zhu, M.; Chen, W.; Lei, Y.; et al. Lightweight porous aerogels comprising nanofibrillated cellulose and MXene nanosheets for
simultaneous microwave and sound absorption applications. ACS. Appl. Nano. Mater. 2025, 8, 3584-94. DOI
69. Kong, L.; Zhang, G.; Cui, H.; Qi, J.; Wang, T.; Xu, H. Deformation induced absorption band-tunable smart CNTs/Ti C T -WPU
3 2 x

