Page 141 - Read Online
P. 141

Xu et al. Soft Sci. 2025, 5, 43  https://dx.doi.org/10.20517/ss.2025.63         Page 15 of 16

                   DOI
               40.      Murali, G.; Reddy, M. J. K.; Park, Y. H.; et al. A review on MXene synthesis, stability, and photocatalytic applications. ACS. Nano.
                   2022, 16, 13370-429.  DOI
               41.      Xie, W.; Tang, Q.; Xie, J.; et al. Organohydrogel-based transparent terahertz absorber via ionic conduction loss. Nat. Commun. 2024,
                   15, 38.  DOI  PubMed  PMC
               42.      Jiang, H.; Yuan, B.; Guo, H.; et al. Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with
                   improved wettability. Nat. Commun. 2024, 15, 6138.  DOI  PubMed  PMC
               43.      Zhao, S.; Zhang, H. B.; Luo, J. Q.; et al. Highly electrically conductive three-dimensional Ti C T  MXene/reduced graphene oxide
                                                                                 3  2  c
                   hybrid aerogels with excellent electromagnetic interference shielding performances. ACS. Nano. 2018, 12, 11193-202.  DOI
               44.      Wu, X.; Wang, Z.; Yu, M.; Xiu, L.; Qiu, J. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids
                   with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 2017, 29, 1607017.  DOI
               45.      Ma, T. B.; Ma, H.; Ruan, K. P.; et al. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding
                   performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248-55.  DOI
               46.      Lin, Y.; Tang, L.; Cheng, L.; et al. Mechanically strong PBO wave-transparent composite papers with excellent UV resistance and
                   ultra-low dielectric constant. J. Mate. Sci. Technol. 2025, 225, 151-8.  DOI
               47.      Lin, Y.; Yong, Z.; Luo, X.; et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide
                   photodetectors in a visible-light integrated photonics platform. Nat. Commun. 2022, 13, 6362.  DOI  PubMed  PMC
               48.      Bauters, J. F.; Heck, M. J. R.; John, D.; et al. Ultra-low-loss high-aspect-ratio Si N  waveguides. Opt. Express. 2011, 19, 3163.  DOI
                                                                      3  4
               49.      Ding, M.; Zhao, D.; Wei, R.; et al. Multifunctional elastomeric composites based on 3D graphene porous materials. Exploration.
                   (Beijing). 2023, 4, 20230057.  DOI
               50.      Wang, H.; Zhao, J.; Wang, Z.; Liu, P. Bird-nest-like multi-interfacial MXene@SiC NWs @Co/C hybrids with enhanced electromagnetic
                   wave absorption. ACS. Appl. Mater. Interfaces. 2023, 15, 4580-90.  DOI
               51.      Wang, L.; Chen, Z.; Wang, X.; et al. Fe O @C 3D foam for strong low-frequency microwave absorption. J. Materiomics. 2023, 9,
                                              3
                                               4
                   148-56.  DOI
               52.      Wang, D.; Zhou, C.; Filatov, A. S.; et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science.
                   2023, 379, 1242-7.  DOI
               53.      Chen, X.; Park, Y. J.; Kang, M.; et al. CVD-grown monolayer MoS  in bioabsorbable electronics and biosensors. Nat. Commun. 2018,
                                                               2
                   9, 1690.  DOI  PubMed  PMC
               54.      Wang, W.; Chen, S. J.; Chen, W.; Duan, W.; Lai, J. Z.; Sagoe-crentsil, K. Damage-tolerant material design motif derived from
                   asymmetrical rotation. Nat. Commun. 2022, 13, 1289.  DOI  PubMed  PMC
               55.      Zhang, J.; Liu, Z.; Han, M.; Zhang, J.; Tang, Y.; Gu, J. Block copolymer functionalized quartz fibers/cyanate ester wave-transparent
                   laminated composites. J. Mater. Sci. Technol. 2023, 139, 189-97.  DOI
               56.      Ma, X.; Zhang, H.; Guo, Y.; et al. Enhancing thermal conductivity in polysiloxane composites through synergistic design of liquid
                   crystals and boron nitride nanosheets. J. Mater. Sci. Technol. 2025, 231, 54-61.  DOI
               57.      Liu, X.; Zhang, L.; Liu, Y.; Ye, F.; Yin, X. Thermodynamic calculations on the chemical vapor deposition of Si-C-N from the
                   SiCl -NH -C H -H -Ar system. Ceram. Int. 2013, 39, 3971-7.  DOI
                      4
                           3
                             6
                               2
                         3
               58.      Gao, C.; He, X.; Ye, F.; Wang, S.; Zhang, G. Electromagnetic wave absorption and mechanical properties of CNTs@GN@Fe O /PU
                                                                                                       4
                                                                                                     3
                   multilayer composite foam. Materials. (Basel). 2021, 14, 7244.  DOI  PubMed  PMC
               59.      Pang, X.; Zhou, X.; Gao, Y.; Qian, Y.; Lyu, L. Optimization of electromagnetic absorption properties based on graphene, carbon
                   nanotubes, and multidimensional composites. Polym. Compos. 2024, 45, 8414-25.  DOI
               60.      Cai, H.; Lin, Z.; Gao, L.; Feng, C.; Tang, R. Non-magnetic hollow ZnO/C fabricated by a novel ZnO self-sacrificial template hollow
                   engineering for efficient microwave absorption. J. Mater. Sci. 2024, 59, 5371-86.  DOI
               61.      Pan, Y.; Cheng, L.; Lan, D.; et al. Conductor-semiconductor heterointerface polarization enhancement for superior electromagnetic
                   wave absorption. J. Mater. Sci. Technol. 2026, 244, 129-41.  DOI
               62.      Gao, X.; Wang, X.; Cai, J.; et al. CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave
                   absorbing. Carbon. 2023, 211, 118083.  DOI
               63.      Ma, W.; He, P.; Wang, T.; et al. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe O @C
                                                                                                     3
                                                                                                       4
                   microspheres. Chem. Eng. J. 2021, 420, 129875.  DOI
               64.      Liu, X. H.; Cai, J. N.; Zhang, J. Y.; et al. Surface-state-constrained topological insulator Bi Te  nanorods for electromagnetic wave
                                                                               2  3
                   trapping and conversion into electricity. J. Mater. Sci. Technol. 2026, 244, 149-55.  DOI
               65.      Hou, Z. L.; Gao, X.; Zhang, J.; Wang, G. A perspective on impedance matching and resonance absorption mechanism for
                   electromagnetic wave absorbing. Carbon. 2024, 222, 118935.  DOI
               66.      Zhang, X.; Xu, L.; Zhou, J.; et al. Liquid metal-derived two-dimensional layered double oxide nanoplatelet-based coatings for
                   electromagnetic wave absorption. ACS. Appl. Nano. Mater. 2021, 4, 9200-12.  DOI
               67.      Gu, W.; Luo, Z.; Wang, J.; et al. Multifunctional lightweight rGO/polyimide hybrid aerogels for highly efficient infrared-radar-
                   acoustic compatibility via heterogeneous interface engineering strategies. J. Mater. Sci. Technol. 2026, 243, 102-14.  DOI
               68.      Zhu, M.; Chen, W.; Lei, Y.; et al. Lightweight porous aerogels comprising nanofibrillated cellulose and MXene nanosheets for
                   simultaneous microwave and sound absorption applications. ACS. Appl. Nano. Mater. 2025, 8, 3584-94.  DOI
               69.      Kong, L.; Zhang, G.; Cui, H.; Qi, J.; Wang, T.; Xu, H. Deformation induced absorption band-tunable smart CNTs/Ti C T -WPU
                                                                                                  3  2  x
   136   137   138   139   140   141   142   143   144   145   146