Page 140 - Read Online
P. 140
Page 14 of 16 Xu et al. Soft Sci. 2025, 5, 43 https://dx.doi.org/10.20517/ss.2025.63
10. Liu, L.; Deng, H.; Tang, X.; et al. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc.
Natl. Acad. Sci. U. S. A. 2021, 118, e2105838118. DOI PubMed PMC
11. Gulati, S.; Yadav, A.; Kumar, N.; Priya, K.; Aggarwal, N. K.; Gupta, R. Phenotypic and genotypic characterization of antioxidant
enzyme system in human population exposed to radiation from mobile towers. Mol. Cell. Biochem. 2017, 440, 1-9. DOI
12. Han, Y.; Guo, H.; Qiu, H.; et al. Multimechanism decoupling for low-frequency microwave absorption hierarchical Fe-doped Co
magnetic microchains. Adv. Funct. Mater.2025, 2506803. DOI
13. Zhou, L.; Hu, P.; Bai, M.; et al. Harnessing the electronic spin states of single atoms for precise electromagnetic modulation. Adv.
Mater. 2024, 37, 2418321. DOI
14. Ma, Z.; Xiang, X.; Shao, L.; Zhang, Y.; Gu, J. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule
heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. Engl. 2022, 61, e202200705. DOI
15. Li, X.; Sheng, X.; Guo, Y.; et al. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and
electrical conductivities. J. Mater. Sci. Technol. 2021, 86, 171-9. DOI
16. Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2014, 14, 23-36. DOI
PubMed
17. Dang, X.; Yi, H.; Ham, M. H.; et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron
collection in photovoltaic devices. Nat. Nanotechnol. 2011, 6, 377-84. DOI
18. Chen, Y.; Zheng, Y.; Zhou, Y.; et al. Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and
self-healing capability. Nat. Commun. 2023, 14, 3438. DOI PubMed PMC
19. Zhai, M.; Zhao, S.; Guo, H.; et al. Bionic-structured electromagnetic interference shielding composites. Sci. Bull. (Beijing). 2025, 70,
2347-64. DOI
20. Wang, B.; Ni, C.; Ding, M.; et al. Hierarchically pepper wood-like Co Fe @C nanotubes for broadband microwave absorption and
3 7
efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 2026, 244, 196-207. DOI
21. Cammarata, M.; Nicoletti, F.; Di, P. M.; Valenza, A.; Zummo, G. Mechanical behavior of human bones with different saturation
levels. In: 2nd International Electronic Conference on Materials: Proceedings of the 2nd International Electronic Conference on
Materials; 2016 May 2-16; Online. Basel: MDPI; 2016. p. B003. DOI
22. Xu, H.; Zhan, H.; Xu, Z.; et al. Sandwich-like CNTs/Carbon@Si N porous foam for temperature-insensitive electromagnetic wave
3 4
absorption. Adv. Funct. Mater. 2025, 35, 2421242. DOI
23. Wei, C.; Shi, L.; Li, M.; et al. Hollow engineering of sandwich NC@Co/NC@MnO composites toward strong wideband
2
electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194-203. DOI
24. Zhang, Y.; Ruan, K.; Gu, J. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent
thermal conductivities. Small. 2021, 17, 2101951. DOI PubMed
25. Lakes, R. Materials with structural hierarchy. Nature. 1993, 361, 511-5. DOI
26. Ajdary, R.; Tardy, B. L.; Mattos, B. D.; Bai, L.; Rojas, O. J. Plant nanomaterials and inspiration from nature: water interactions and
hierarchically structured hydrogels. Adv. Mater. 2020, 33, 2001085. DOI PubMed PMC
27. Chen, Z.; Zhang, Y.; Wang, Z.; et al. Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on
the graphite powder. Carbon. 2023, 201, 542-8. DOI
28. Zheng, J.; Lan, D.; Zhang, S.; et al. Zeolite imidazolate framework derived efficient absorbers: From morphology modulation to
component regulation. J. Alloys. Compd. 2025, 1010, 177092. DOI
29. Xiao, J.; Zhan, B.; He, M.; et al. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/
carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 2024, 35, 2316722. DOI
30. Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti C T hollow microspheres on thermally conductive polyimide
2
x
3
composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642. DOI
31. Zhao, R.; Gao, T.; Li, Y.; et al. Highly anisotropic Fe C microflakes constructed by solid-state phase transformation for efficient
3
microwave absorption. Nat. Commun. 2024, 15, 1497. DOI PubMed PMC
32. Zhou, Y.; Zhang, Y.; Ruan, K.; et al. MXene-based fibers: preparation, applications, and prospects. Sci. Bull. (Beijing). 2024, 69,
2776-92. DOI
33. Wang, B.; Ni, C.; Xie, X.; Ding, M.; Li, C. Carbon nanotubes-encapsulated Co/Co Fe nanocomposites: achieving wideband
7 3
electromagnetic wave absorption at ultrathin-thickness by regulating magnetic phase ratio. Chem. Eng. J. 2024, 494, 153076. DOI
34. Li, X.; Niu, M.; Li, C.; et al. Dipole polarization and synchronous magnetic modulation induced by FeN moiety on Ti C T for
x
4
2
3
superior electromagnetic wave absorption performance. Carbon. Energy.2025, e70078. DOI
35. Zhang, Y.; Ruan, K.; Guo, Y.; Gu, J. Recent Advances of MXenes-based optical functional materials. Adv. Photonics. Res. 2023, 4,
2300224. DOI
36. Sun, Y.; Su, Y.; Chai, Z.; Jiang, L.; Heng, L. Flexible solid-liquid Bi-continuous electrically and thermally conductive nanocomposite
for electromagnetic interference shielding and heat dissipation. Nat. Commun. 2024, 15, 7290. DOI PubMed PMC
37. Zhang, Y.; Yan, Y.; Qiu, H.; Ma, Z.; Ruan, K.; Gu, J. A mini-review of MXene porous films: Preparation, mechanism and application.
J. Mater. Sci. Technol. 2022, 103, 42-9. DOI
38. Zhou, Y.; Zhang, Y.; Pang, Y.; et al. Thermally conductive Ti C T fibers with superior electrical conductivity. Nanomicro. Lett. 2025,
3
2 x
17, 235. DOI PubMed PMC
39. Du, Z.; Yang, S.; Li, S.; et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature. 2020, 577, 492-6.

