Page 140 - Read Online
P. 140

Page 14 of 16                            Xu et al. Soft Sci. 2025, 5, 43  https://dx.doi.org/10.20517/ss.2025.63

               10.      Liu, L.; Deng, H.; Tang, X.; et al. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc.
                   Natl. Acad. Sci. U. S. A. 2021, 118, e2105838118.  DOI  PubMed  PMC
               11.      Gulati, S.; Yadav, A.; Kumar, N.; Priya, K.; Aggarwal, N. K.; Gupta, R. Phenotypic and genotypic characterization of antioxidant
                   enzyme system in human population exposed to radiation from mobile towers. Mol. Cell. Biochem. 2017, 440, 1-9.  DOI
               12.      Han, Y.; Guo, H.; Qiu, H.; et al. Multimechanism decoupling for low-frequency microwave absorption hierarchical Fe-doped Co
                   magnetic microchains. Adv. Funct. Mater.2025, 2506803.  DOI
               13.      Zhou, L.; Hu, P.; Bai, M.; et al. Harnessing the electronic spin states of single atoms for precise electromagnetic modulation. Adv.
                   Mater. 2024, 37, 2418321.  DOI
               14.      Ma, Z.; Xiang, X.; Shao, L.; Zhang, Y.; Gu, J. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule
                   heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. Engl. 2022, 61, e202200705.  DOI
               15.      Li, X.; Sheng, X.; Guo, Y.; et al. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and
                   electrical conductivities. J. Mater. Sci. Technol. 2021, 86, 171-9.  DOI
               16.      Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2014, 14, 23-36.  DOI
                   PubMed
               17.      Dang, X.; Yi, H.; Ham, M. H.; et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron
                   collection in photovoltaic devices. Nat. Nanotechnol. 2011, 6, 377-84.  DOI
               18.      Chen, Y.; Zheng, Y.; Zhou, Y.; et al. Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and
                   self-healing capability. Nat. Commun. 2023, 14, 3438.  DOI  PubMed  PMC
               19.      Zhai, M.; Zhao, S.; Guo, H.; et al. Bionic-structured electromagnetic interference shielding composites. Sci. Bull. (Beijing). 2025, 70,
                   2347-64.  DOI
               20.      Wang, B.; Ni, C.; Ding, M.; et al. Hierarchically pepper wood-like Co Fe @C nanotubes for broadband microwave absorption and
                                                                  3  7
                   efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 2026, 244, 196-207.  DOI
               21.      Cammarata, M.; Nicoletti, F.; Di, P. M.; Valenza, A.; Zummo, G. Mechanical behavior of human bones with different saturation
                   levels. In: 2nd International Electronic Conference on Materials: Proceedings of the 2nd International Electronic Conference on
                   Materials; 2016 May 2-16; Online. Basel: MDPI; 2016. p. B003.  DOI
               22.      Xu, H.; Zhan, H.; Xu, Z.; et al. Sandwich-like CNTs/Carbon@Si N  porous foam for temperature-insensitive electromagnetic wave
                                                              3  4
                   absorption. Adv. Funct. Mater. 2025, 35, 2421242.  DOI
               23.      Wei,  C.;  Shi,  L.;  Li,  M.;  et  al.  Hollow  engineering  of  sandwich  NC@Co/NC@MnO   composites  toward  strong  wideband
                                                                               2
                   electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194-203.  DOI
               24.      Zhang, Y.; Ruan, K.; Gu, J. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent
                   thermal conductivities. Small. 2021, 17, 2101951.  DOI  PubMed
               25.      Lakes, R. Materials with structural hierarchy. Nature. 1993, 361, 511-5.  DOI
               26.      Ajdary, R.; Tardy, B. L.; Mattos, B. D.; Bai, L.; Rojas, O. J. Plant nanomaterials and inspiration from nature: water interactions and
                   hierarchically structured hydrogels. Adv. Mater. 2020, 33, 2001085.  DOI  PubMed  PMC
               27.      Chen, Z.; Zhang, Y.; Wang, Z.; et al. Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on
                   the graphite powder. Carbon. 2023, 201, 542-8.  DOI
               28.      Zheng, J.; Lan, D.; Zhang, S.; et al. Zeolite imidazolate framework derived efficient absorbers: From morphology modulation to
                   component regulation. J. Alloys. Compd. 2025, 1010, 177092.  DOI
               29.      Xiao, J.; Zhan, B.; He, M.; et al. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/
                   carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 2024, 35, 2316722.  DOI
               30.      Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti C T  hollow microspheres on thermally conductive polyimide
                                                                 2
                                                                  x
                                                               3
                   composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.  DOI
               31.      Zhao, R.; Gao, T.; Li, Y.; et al. Highly anisotropic Fe C microflakes constructed by solid-state phase transformation for efficient
                                                       3
                   microwave absorption. Nat. Commun. 2024, 15, 1497.  DOI  PubMed  PMC
               32.      Zhou, Y.; Zhang, Y.; Ruan, K.; et al. MXene-based fibers: preparation, applications, and prospects. Sci. Bull. (Beijing). 2024, 69,
                   2776-92.  DOI
               33.      Wang, B.; Ni, C.; Xie, X.; Ding, M.; Li, C. Carbon nanotubes-encapsulated Co/Co Fe  nanocomposites: achieving wideband
                                                                             7  3
                   electromagnetic wave absorption at ultrathin-thickness by regulating magnetic phase ratio. Chem. Eng. J. 2024, 494, 153076.  DOI
               34.      Li, X.; Niu, M.; Li, C.; et al. Dipole polarization and synchronous magnetic modulation induced by FeN  moiety on Ti C T  for
                                                                                                       x
                                                                                          4
                                                                                                     2
                                                                                                    3
                   superior electromagnetic wave absorption performance. Carbon. Energy.2025, e70078.  DOI
               35.      Zhang, Y.; Ruan, K.; Guo, Y.; Gu, J. Recent Advances of MXenes-based optical functional materials. Adv. Photonics. Res. 2023, 4,
                   2300224.  DOI
               36.      Sun, Y.; Su, Y.; Chai, Z.; Jiang, L.; Heng, L. Flexible solid-liquid Bi-continuous electrically and thermally conductive nanocomposite
                   for electromagnetic interference shielding and heat dissipation. Nat. Commun. 2024, 15, 7290.  DOI  PubMed  PMC
               37.      Zhang, Y.; Yan, Y.; Qiu, H.; Ma, Z.; Ruan, K.; Gu, J. A mini-review of MXene porous films: Preparation, mechanism and application.
                   J. Mater. Sci. Technol. 2022, 103, 42-9.  DOI
               38.      Zhou, Y.; Zhang, Y.; Pang, Y.; et al. Thermally conductive Ti C T  fibers with superior electrical conductivity. Nanomicro. Lett. 2025,
                                                           3
                                                            2 x
                   17, 235.  DOI  PubMed  PMC
               39.      Du, Z.; Yang, S.; Li, S.; et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature. 2020, 577, 492-6.
   135   136   137   138   139   140   141   142   143   144   145