Page 139 - Read Online
P. 139

Xu et al. Soft Sci. 2025, 5, 43  https://dx.doi.org/10.20517/ss.2025.63         Page 13 of 16

               DECLARATIONS
               Acknowledgments
               We are grateful to Gao Qianwen (Analytical & Testing Center of NPU) for her help in the microstructure
               characterization.


               Authors’ contributions
               Wrote the original draft: Xu, H.; Jing, C.; Xu, Z.; Zhan, H.
               Supervised, reviewed, and revised the manuscript: Ye, F.; Chen, Q.; Zhu, M.; Kong, L.; Li, X.; Chai, X.; Qing,
               Y.; Fan, X.; Luo, F.


               Availability of data and materials
               The data that support the findings of this study are available from the corresponding author upon
               reasonable request.

               Financial support and sponsorship
               This work was supported by the National Natural Science Foundation of China (Grants Nos. 52302367,
               52203094), the National Key Laboratory of Electromagnetic Information Control and Effects Open Fund
               (Grants No. SYS1W2023010304), and the State Key Laboratory of Solidification Processing in NPU (Grant
               No. 2025-TS-08).

               Conflict of Interest
               Xia Chai is affiliated with Shaanxi Huaqin Technology Industry Co., Ltd, while the other authors have
               declared that they have no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.


               REFERENCES
               1.       Wu, Z.; Cheng, H.; Jin, C.; et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption.
                   Adv. Mater. 2022, 34, 2107538.  DOI
               2.       Qin, M.; Zhang, L.; Wu, H. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. (Weinh). 2022, 9,
                   2105553.  DOI  PubMed  PMC
               3.       Lv, H.; Yao, Y.; Yuan, M.; et al. Functional nanoporous graphene superlattice. Nat. Commun. 2024, 15, 1295.  DOI  PubMed  PMC
               4.       Zhang, Y.; Liu, A.; Tian, Y.; et al. Direct-ink-writing printed aerogels with dynamically reversible thermal management and tunable
                   electromagnetic interference shielding. Adv. Mater.2025, 2505521.  DOI
               5.       Liu, A.; Qiu, H.; Lu, X.; et al. Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference
                   shielding with ultra-low reflection. Adv. Mater. 2024, 37, 2414085.  DOI
               6.       Liu, Y.; Zhou, J.; Li, C.; et al. Interfacial coupling effects in two-dimensional ordered arrays for microwave attenuation. Nat. Commun.
                   2025, 16, 202.  DOI  PubMed  PMC
               7.       Yuan, L.; Zhao, T.; Dai, J.; et al. High-density, crosstalk-free, flexible electrolyte-gated synaptic transistors array via all-
                   photolithography for multimodal neuromorphic computing. Adv. Funct. Mater. 2025, 35, 2418052.  DOI
               8.       Cheng, S.; Sheng, D.; Mukherjee, S.; et al. Carbon nanolayer-mounted single metal sites enable dipole polarization loss under
                   electromagnetic field. Nat. Commun. 2024, 15, 9077.  DOI  PubMed  PMC
               9.       Tao, J.; Yan, Y.; Zhou, J.; et al. Anionic high-entropy doping engineering for electromagnetic wave absorption. Nat. Commun. 2025,
                   16, 3163.  DOI  PubMed  PMC
   134   135   136   137   138   139   140   141   142   143   144