Page 121 - Read Online
P. 121

Yin et al. Soft Sci. 2025, 5, 30  https://dx.doi.org/10.20517/ss.2025.15         Page 9 of 9

                   Mater. Technol. 2024, 9, 2301483.  DOI
               30.      Hao, X. P.; Zhang, C. W.; Zhang, X. N.; et al. Healable, recyclable, and multifunctional soft electronics based on biopolymer hydrogel
                   and patterned liquid metal. Small 2022, 18, e2201643.  DOI
               31.      Jia, L.; Li, Y.; Ren, A.; Xiang, T.; Zhou, S. Degradable and recyclable hydrogels for sustainable bioelectronics. ACS. Appl. Mater.
                   Interfaces. 2024, 16, 32887-905.  DOI
               32.      Song, X.; Liu, Y.; Liu, Z.; et al. Natural protein-based biogels with biomimetic mechanics and multifunctionality for skin sensors.
                   ACS. Mater. Lett. 2025, 7, 202-9.  DOI
               33.      Wei, S.; Xu, J.; Zhao, W.; Li, X.; Zhao, W.; Yan, S. Mechanically robust gelatin gel for sensitive touch sensor based on electrode
                   potential. Adv. Funct. Mater. 2024, 34, 2408648.  DOI
               34.      Tordi, P.; Tamayo, A.; Jeong, Y.; Bonini, M.; Samorì, P. Multiresponsive ionic conductive alginate/gelatin organohydrogels with
                   tunable functions. Adv. Funct. Mater. 2024, 34, 2410663.  DOI
               35.      Lu, X.; Mo, Z.; Liu, Z.; et al. Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-
                   autonomous and wearable sensing. Angew. Chem. Int. Ed. Engl. 2024, 63, e202405357.  DOI
               36.      Wang, C.; Wang, H.; Wang, B.; et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv.
                   2022, 8, eabo1396.  DOI  PubMed  PMC
               37.      Li, L.; Ye, X.; Ji, Z.; et al. Paintable, fast gelation, highly adhesive hydrogels for high-fidelity electrophysiological monitoring
                   wirelessly. Small 2025, 21, e2407996.  DOI
               38.      Lan, L.; Ping, J.; Li, H.; et al. Skin-inspired all-natural biogel for bioadhesive interface. Adv. Mater. 2024, 36, e2401151.  DOI
               39.      Shin, S. R.; Jung, S. M.; Zalabany, M.; et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and
                   bioactuators. ACS. Nano. 2013, 7, 2369-80.  DOI
               40.      Yin, R.; Zhang, C.; Shao, J.; et al. Integration of flexible, recyclable, and transient gelatin hydrogels toward multifunctional
                   electronics. J. Mater. Sci. Technol. 2023, 145, 83-92.  DOI
               41.      Wan, C.; Wu, Z.; Ren, M.; et al. In situ formation of conductive epidermal electrodes using a fully integrated flexible system and
                   injectable photocurable ink. ACS. Nano. 2023, 17, 10689-700.  DOI
               42.      Zhang, Y. Z.; El-Demellawi, J. K.; Jiang, Q.; et al. MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229-
                   51.  DOI
               43.      Wang, X.; Wang, X.; Yin, J.; et al. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with
                   environmental stability and self-adhesiveness for multifunctional sensor. Compos. Part. B. Eng. 2022, 241, 110052.  DOI
               44.      Picchio, M. L.; Gallastegui, A.; Casado, N.; et al. Mixed ionic and electronic conducting eutectogels for 3d printable wearable sensors
                   and bioelectrodes. Adv. Mater. Technol. 2022, 7, 2101680.  DOI
               45.      Li, T.; Qi, H.; Zhao, C.; et al. Robust skin-integrated conductive biogel for high-fidelity detection under mechanical stress. Nat.
                   Commun. 2025, 16, 88.  DOI  PubMed  PMC
   116   117   118   119   120   121   122   123   124   125   126