Page 120 - Read Online
P. 120
Page 8 of 9 Yin et al. Soft Sci. 2025, 5, 30 https://dx.doi.org/10.20517/ss.2025.15
Copyright
© The Author(s) 2025.
REFERENCES
1. Ates, H. C.; Nguyen, P. Q.; Gonzalez-Macia, L.; et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887-907. DOI
PubMed PMC
2. Chen, C.; Ding, S.; Wang, J. Digital health for aging populations. Nat. Med. 2023, 29, 1623-30. DOI
3. Gong, S.; Lu, Y.; Yin, J.; Levin, A.; Cheng, W. Materials-driven soft wearable bioelectronics for connected healthcare. Chem. Rev.
2024, 124, 455-553. DOI PubMed
4. Han, F.; Wang, T.; Liu, G.; et al. Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv.
Mater. 2022, 34, e2109055. DOI
5. Wang, L.; Xu, T.; Zhang, X. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC. Trends. Anal. Chem. 2021,
134, 116130. DOI
6. Sun, G.; Wang, P.; Jiang, Y.; Sun, H.; Meng, C.; Guo, S. Recent advances in flexible and soft gel-based pressure sensors. Soft. Sci.
2022, 2, 17. DOI
7. Gao, D.; Lv, J.; Lee, P. S. Natural polymer in soft electronics: opportunities, challenges, and future prospects. Adv. Mater. 2022, 34,
e2105020. DOI PubMed
8. Wang, C.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev.
2021, 121, 2109-46. DOI PubMed
9. Wang, Z.; Wei, H.; Huang, Y.; Wei, Y.; Chen, J. Naturally sourced hydrogels: emerging fundamental materials for next-generation
healthcare sensing. Chem. Soc. Rev. 2023, 52, 2992-3034. DOI
10. Wang, C.; Liu, Y. Functionalization of natural-derived biogels for soft bioelectronics. Acc. Mater. Res. 2024, 5, 1-5. DOI
11. Zeng, Q.; Tang, N.; Shi, G.; Zhang, M. Biogel library-accelerated discovery of all-natural bioelectronics. ACS. Sens. 2024, 9, 6685-97.
DOI
12. Campiglio, C. E.; Contessi, N. N.; Farè, S.; Draghi, L. Cross-linking strategies for electrospun gelatin scaffolds. Materials. (Basel).
2019, 12, 2476. DOI PubMed PMC
13. Zhou, L.; Dai, C.; Fan, L.; et al. Injectable Self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive
reversible adhesion for minimally invasive surgery. Adv. Funct. Mater. 2021, 31, 2007457. DOI
14. Balakrishnan, G.; Bhat, A.; Naik, D.; et al. Gelatin-based ingestible impedance sensor to evaluate gastrointestinal epithelial barriers.
Adv. Mater. 2023, 35, e2211581. DOI PubMed PMC
15. Mao, L.; Ma, L.; Fu, Y.; et al. Transglutaminase modified type A gelatin gel: The influence of intra-molecular and inter-molecular
cross-linking on structure-properties. Food. Chem. 2022, 395, 133578. DOI
16. Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft. Matter. 2014, 10,
672-87. DOI PubMed PMC
17. Xu, C.; Chen, Y.; Zhao, S.; et al. Mechanical regulation of polymer gels. Chem. Rev. 2024, 124, 10435-508. DOI
18. Zhang, C. W.; Si, M.; Chen, C.; et al. Hierarchical engineering for biopolymer-based hydrogels with tailored property and
functionality. Adv. Mater. 2025, 37, e2414897. DOI
19. He, Q.; Huang, Y.; Wang, S. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct.
Mater. 2018, 28, 1705069. DOI
20. Yuan, X.; Zhu, Z.; Xia, P.; et al. Tough gelatin hydrogel for tissue engineering. Adv. Sci. (Weinh). 2023, 10, e2301665. DOI PubMed
PMC
21. Wei, Y.; He, Y.; Wang, C.; Chen, G.; Zhao, B. Asymmetric “Janus” biogel for human-machine interfaces. Adv. Funct. Mater. 2023,
33, 2214366. DOI
22. Qin, Z.; Dong, D.; Yao, M.; et al. Freezing-tolerant supramolecular organohydrogel with high toughness, thermoplasticity, and
healable and adhesive properties. ACS. Appl. Mater. Interfaces. 2019, 11, 21184-93. DOI
23. Xu, L.; Wang, C.; Cui, Y.; Li, A.; Qiao, Y.; Qiu, D. Conjoined-network rendered stiff and tough hydrogels from biogenic molecules.
Sci. Adv. 2019, 5, eaau3442. DOI PubMed PMC
24. Yang, S.; Zhang, Y.; Wang, T.; Sun, W.; Tong, Z. Ultrafast and programmable shape memory hydrogel of gelatin soaked in tannic
acid solution. ACS. Appl. Mater. Interfaces. 2020, 12, 46701-9. DOI
25. Gu, Y.; Xu, C.; Wang, Y.; et al. Compressible, anti-fatigue, extreme environment adaptable, and biocompatible supramolecular
organohydrogel enabled by lignosulfonate triggered noncovalent network. Nat. Commun. 2025, 16, 160. DOI PubMed PMC
26. Huang, Y.; Chen, T.; Ren, C.; et al. High-strength gelatin hydrogel scaffold with drug loading remodels the inflammatory
microenvironment to enhance osteoporotic bone repair. Adv. Mater. 2025, 37, e2501051. DOI
27. Ren, C.; Chen, W.; Liao, Y.; et al. Reinforcing gelatin hydrogels via in situ phase separation and enhanced interphase bonding for
advanced 3D fabrication. Adv. Mater. 2025, 37, e2416432. DOI
28. Baumgartner, M.; Hartmann, F.; Drack, M.; et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics.
Nat. Mater. 2020, 19, 1102-9. DOI
29. Song, H.; Wang, H.; Gan, T.; et al. Gelatin biogel-liquid metal composite transient circuits for recyclable flexible electronics. Adv.

