Page 25 - Read Online
P. 25
Jo et al. Soft Sci 2024;4:27 https://dx.doi.org/10.20517/ss.2024.19 Page 13 of 14
application to quantitative immunoassay. Part Part Syst Char 2020;37:1900441. DOI
26. Li Y, Hou X, Dai X, et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence.
J Am Chem Soc 2019;141:6448-52. DOI PubMed
27. Lim J, Bae WK, Lee D, et al. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability. Chem Mater
2011;23:4459-63. DOI
28. Hahm D, Chang JH, Jeong BG, et al. Design principle for bright, robust, and color-pure InP/ZnSe S /ZnS heterostructures. Chem
x 1-x
Mater 2019;31:3476-84. DOI
29. Jo J, Jo D, Lee S, et al. InP-based quantum dots having an InP core, composition-gradient ZnSeS inner shell, and ZnS outer shell with
sharp, bright emissivity, and blue absorptivity for display devices. ACS Appl Nano Mater 2020;3:1972-80. DOI
30. Lee SH, Kim Y, Jang H, et al. The effects of discrete and gradient mid-shell structures on the photoluminescence of single InP
quantum dots. Nanoscale 2019;11:23251-8. DOI PubMed
31. Kim Y, Ham S, Jang H, et al. Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays. ACS
Appl Nano Mater 2019;2:1496-504. DOI
32. Won YH, Cho O, Kim T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019;575:634-8.
DOI PubMed
33. Cui J, Beyler AP, Marshall LF, et al. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral
linewidths. Nat Chem 2013;5:602-6. DOI PubMed PMC
34. Cros-Gagneux A, Delpech F, Nayral C, Cornejo A, Coppel Y, Chaudret B. Surface chemistry of InP quantum dots: a comprehensive
study. J Am Chem Soc 2010;132:18147-57. DOI PubMed
35. Choi S, Kim H, Yoon S, et al. Aminophosphine-derived, high-quality red-emissive InP quantum dots by the use of an unconventional
in halide. J Mater Chem C 2022;10:2213-22. DOI
36. Li H, Zhang W, Bian Y, Ahn TK, Shen H, Ji B. ZnF -assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for
2
efficient and stable electroluminescence. Nano Lett 2022;22:4067-73. DOI PubMed
37. Xi L, Cho DY, Besmehn A, et al. Effect of zinc incorporation on the performance of red light emitting InP core nanocrystals. Inorg
Chem 2016;55:8381-6. DOI PubMed
38. Koh S, Eom T, Kim WD, et al. Zinc–phosphorus complex working as an atomic valve for colloidal growth of monodisperse indium
phosphide quantum dots. Chem Mater 2017;29:6346-55. DOI
39. Kim K, Suh Y, Kim D, et al. Zinc oxo clusters improve the optoelectronic properties on indium phosphide quantum dots. Chem Mater
2020;32:2795-802. DOI
40. Nemoto K, Watanabe J, Sun HT, Shirahata N. Coherent InP/ZnS core@shell quantum dots with narrow-band green emissions.
Nanoscale 2022;14:9900-9. DOI PubMed
41. Cho E, Jang H, Lee J, Jang E. Modeling on the size dependent properties of InP quantum dots: a hybrid functional study.
Nanotechnology 2013;24:215201. DOI PubMed
42. Taylor DA, Teku JA, Cho S, Chae W, Jeong S, Lee J. Importance of surface functionalization and purification for narrow FWHM and
bright green-emitting InP core–multishell quantum dots via a two-step growth process. Chem Mater 2021;33:4399-407. DOI
43. Jo J, Jo D, Choi S, et al. Highly bright, narrow emissivity of InP quantum dots synthesized by aminophosphine: effects of double
shelling scheme and Ga treatment. Adv Opt Mater 2021;9:2100427. DOI
44. Kim TG, Zherebetskyy D, Bekenstein Y, et al. Trap passivation in indium-based quantum dots through surface fluorination:
mechanism and applications. ACS Nano 2018;12:11529-40. DOI PubMed
45. Xu S, Ziegler J, Nann T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J Mater Chem 2008;18:2653-6. DOI
46. Tessier MD, Baquero EA, Dupont D, et al. Interfacial oxidation and photoluminescence of InP-based core/shell quantum dots. Chem
Mater 2018;30:6877-83. DOI
47. Ubbink RF, Almeida G, Iziyi H, et al. A water-free in situ HF treatment for ultrabright InP quantum dots. Chem Mater 2022;34:10093-
103. DOI PubMed PMC
48. Anderson NC, Hendricks MP, Choi JJ, Owen JS. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals:
spectroscopic observation of facile metal-carboxylate displacement and binding. J Am Chem Soc 2013;135:18536-48. DOI PubMed
PMC
49. Kirkwood N, Monchen JOV, Crisp RW, et al. Finding and fixing traps in II-VI and III-V colloidal quantum dots: the importance of Z-
type ligand passivation. J Am Chem Soc 2018;140:15712-23. DOI PubMed PMC
50. Purcell-milton F, Chiffoleau M, Gun’ko YK. Investigation of quantum dot–metal halide interactions and their effects on optical
properties. J Phys Chem C 2018;122:25075-84. DOI
51. Calvin JJ, Swabeck JK, Sedlak AB, Kim Y, Jang E, Alivisatos AP. Thermodynamic investigation of increased luminescence in indium
phosphide quantum dots by treatment with metal halide salts. J Am Chem Soc 2020;142:18897-906. DOI PubMed
52. Tessier MD, Dupont D, De Nolf K, De Roo J, Hens Z. Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum
dots. Chem Mater 2015;27:4893-8. DOI
53. Zhu Y, Shen C, Xu X, et al. Photoluminescence properties of InP/GaP/ZnS core/shell/shell colloidal quantum dots treated with halogen
acids. J Lumin 2023;256:119651. DOI
54. Jun B, Lee HK, Park Y, Kwon Y. Degradation of full aromatic polyamide NF membrane by sulfuric acid and hydrogen halides:
change of the surface/permeability properties. Polym Degrad Stabil 2019;162:1-11. DOI

