Page 24 - Read Online
P. 24

Page 12 of 14                             Jo et al. Soft Sci 2024;4:27  https://dx.doi.org/10.20517/ss.2024.19

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2024.


               REFERENCES
               1.       Pietryga JM, Park YS, Lim J, et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev 2016;116:10513-622.
                   DOI  PubMed
               2.       Yang Z, Gao M, Wu W, et al. Recent advances in quantum dot-based light-emitting devices: challenges and possible solutions. Mater
                   Today 2019;24:69-93.  DOI
               3.       Dai X, Deng Y, Peng X, Jin Y. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv
                   Mater 2017;29:1607022.  DOI  PubMed
               4.       Han C, Yang H. Development of colloidal quantum dots for electrically driven light-emitting devices. J Korean Ceram Soc
                   2017;54:449-69.  DOI
               5.       Lin Q, Zhu Y, Wang Y, et al. Flexible quantum dot light-emitting device for emerging multifunctional and smart applications. Adv
                   Mater 2023;35:e2210385.  DOI  PubMed
               6.       Kim DC, Seung H, Yoo J, et al. Intrinsically stretchable quantum dot light-emitting diodes. Nat Electron 2024;7:365-74.  DOI
               7.       Bourzac K. Quantum dots go on display. Nature 2013;493:283.  DOI  PubMed
               8.       Mashford BS, Stevenson M, Popovic Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection.
                   Nature Photon 2013;7:407-12.  DOI
               9.       Lu M, Zhang Y, Wang S, Guo J, Yu WW, Rogach AL. Metal halide perovskite light-emitting devices: promising technology for next-
                   generation displays. Adv Funct Mater 2019;29:1902008.  DOI
               10.      Chen O, Zhao J, Chauhan VP, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and
                   suppressed blinking. Nat Mater 2013;12:445-51.  DOI  PubMed  PMC
               11.      Hu S, Shabani F, Liu B, et al. High-performance deep red colloidal quantum well light-emitting diodes enabled by the understanding
                   of charge dynamics. ACS Nano 2022;16:10840-51.  DOI  PubMed
               12.      Yang SJ, Oh JH, Kim S, Yang H, Do YR. Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and
                   their color-tunable, four-package white LEDs. J Mater Chem C 2015;3:3582-91.  DOI
               13.      Liu P, Lou Y, Ding S, et al. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective
                   display applications. Adv Funct Mater 2021;31:2008453.  DOI
               14.      Ramasamy P, Kim N, Kang Y, Ramirez O, Lee J. Tunable, bright, and narrow-band luminescence from colloidal indium phosphide
                   quantum dots. Chem Mater 2017;29:6893-9.  DOI
               15.      Cao F, Wang S, Wang F, Wu Q, Zhao D, Yang X. A layer-by-layer growth strategy for large-size InP/ZnSe/ZnS core–shell quantum
                   dots enabling high-efficiency light-emitting diodes. Chem Mater 2018;30:8002-7.  DOI
               16.      Tamang S, Lincheneau C, Hermans Y, Jeong S, Reiss P. Chemistry of InP nanocrystal syntheses. Chem Mater 2016;28:2491-506.
                   DOI
               17.      Song W, Lee S, Yang H. Fabrication of warm, high CRI white LED using non-cadmium quantum dots. Opt Mater Express
                   2013;3:1468-73.  DOI
               18.      Kim K, Jo J, Jo D, et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity. Chem Mater 2020;32:3537-44.
                   DOI
               19.      Lad  AD,  Mahamuni  S.  Effect  of  ZnS  shell  formation  on  the  confined  energy  levels  of  ZnSe  quantum  dots.  Phys  Rev  B
                   2008;78:125421.  DOI
               20.      Li Z, Wei J, Wang F, et al. Carrier dynamics in alloyed chalcogenide quantum dots and their light-emitting devices. Adv Energy Mater
                   2021;11:2101693.  DOI
               21.      Li L, Reiss P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J Am Chem Soc
                   2008;130:11588-9.  DOI  PubMed
               22.      Ryu E, Kim S, Jang E, et al. Step-wise synthesis of InP/ZnS core−shell quantum dots and the role of zinc acetate. Chem Mater
                   2009;21:573-5.  DOI
               23.      Kim S, Kim T, Kang M, et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J Am
                   Chem Soc 2012;134:3804-9.  DOI  PubMed
               24.      Park JP, Lee JJ, Kim SW. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process. Sci Rep
                   2016;6:30094.  DOI  PubMed  PMC
               25.      Xu Y, Lv Y, Wu R, et al. Preparation of highly stable and photoluminescent cadmium-free InP/GaP/ZnS core/shell quantum dots and
   19   20   21   22   23   24   25   26   27   28   29