Page 78 - Read Online
P. 78

Page 34 of 35                  Villeda-Hernandez et al. Soft Sci 2024;4:14  https://dx.doi.org/10.20517/ss.2023.52

               118.      Tortolero-Langarica JJA, Rodríguez-Troncoso AP, Cupul-Magaña AL, Morales-de-Anda DE, Caselle JE, Carricart-Ganivet JP. Coral
                    calcification and carbonate production in the eastern tropical Pacific: the role of branching and massive corals in the reef
                    maintenance. Geobiology 2022;20:533-45.  DOI  PubMed
               119.      Carlot J, Kayal M, Lenihan HS, et al. Juvenile corals underpin coral reef carbonate production after disturbance. Glob Chang Biol
                    2021;27:2623-32.  DOI
               120.      Wu S, Baker GL, Yin J, Zhu Y. Fast thermal actuators for soft robotics. Soft Robot 2022;9:1031-9.  DOI  PubMed
               121.      Benard J. The oxidation of metals and alloys. Metall Rev 1964;9:473-503.  DOI
               122.      Kofstad P. Oxidation of metals: determination of activation energies. Nature 1957;179:1362-3.  DOI
               123.      Khanna AS. Chapter 6 - High temperature oxidation. Handbook of environmental degradation of materials. Elsevier; 2005. pp. 105-
                    52.  DOI
               124.      Young DJ. High temperature oxidation and corrosion of metals. 1st ed. Elsevier; 2008, pp. 593. Available from: https://shop.elsevier.
                    com/books/high-temperature-oxidation-and-corrosion-of-metals/young/978-0-08-044587-8. [Last accessed on 27 March 2024].
               125.      Shemet V, Pomytkin A, Neshpor V. High-temperature oxidation behaviour of carbon materials in air. Carbon 1993;31:1-6.  DOI
               126.      Nagai T, Kurita A, Shintake J. Characterization of sustainable robotic materials and finite element analysis of soft actuators under
                    biodegradation. Front Robot AI 2021;8:760485.  DOI  PubMed  PMC
               127.      Laschi C, Mazzolai B. Bioinspired materials and approaches for soft robotics. MRS Bulletin 2021;46:345-9.  DOI
               128.      Leigh GJ. Haber-bosch and other industrial processes. In: Smith BE, Richards RL, Newton WE, editors. Catalysts for nitrogen
                    fixation. Dordrecht,Netherlands: Springer; 2004. pp. 33-54.  DOI
               129.      Bullock RM. Catalysis without precious metals. Wiley; 2010.  DOI
               130.      Rylander P. Catalytic hydrogenation over platinum metals. Elsevier;2012. Available from: https://books.google.com/books?hl=zh-
                    CN&lr=&id=NPgzMIHISv0C&oi=fnd&pg=PP1&dq=Rylander+P.+Catalytic+hydrogenation+over+platinum+metals+2012&ots=-
                    8Fs853tLo&sig=OK3q0opAmHPc4xfhCiEroJV0BT8#v=onepage&q=Rylander%20P.%20Catalytic%20hydrogenation%20over%
                    20platinum%20metals%202012&f=false. [Last accessed on 27 March 2024].
               131.      Ottaway MR, Coates CF, Haines PJ, Skinner GA. The use of thermal methods in assessing the hazards and safety of chemical
                    reactions. Anal Proc 1986;23:116.  DOI
               132.      Etchells JC; Principal Specialist Inspector. The protection of reactors containing exothermic reactions: an HSE view. 1994. pp. 377-
                    84. Available from: https://www.icheme.org/media/10390/xii-paper-25.pdf. [Last accessed on 27 March 2024].
               133.      Halliwell B, Adhikary A, Dingfelder M, Dizdaroglu M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo.
                    Chem Soc Rev 2021;50:8355-60.  DOI  PubMed  PMC
               134.      Taylor CJ, Pomberger A, Felton KC, et al. A brief introduction to chemical reaction optimization. Chem Rev 2023;123:3089-126.
                    DOI  PubMed  PMC
               135.      Stoessel F. Thermal safety of chemical processes: risk assessment and process design. Wiley; 2008. pp. 1-374.  DOI
               136.      Brent J, Burkhart K, Dargan P, et al. Critical care toxicology: diagnosis and management of the critically poisoned patient. Springer;
                    2017. pp. 1-3058.  DOI
               137.      Shepherd RF, Ilievski F, Choi W, et al. Multigait soft robot. Proc Natl Acad Sci U S A 2011;108:20400-3.  DOI  PubMed  PMC
               138.      Joshi S, Paik J. Pneumatic supply system parameter optimization for soft actuators. Soft Robot 2021;8:152-63.  DOI  PubMed
               139.      Soft robotics toolkit. Modeling and design tool for soft pneumatic actuators. Available from: https://softroboticstoolkit.com/book/
                    modeling-soft-pneumatic-actuators. [Last accessed on 27 March 2024].
               140.      Mourad AA, Mohammad AF, Al-marzouqi AH, El-naas MH, Al-marzouqi MH, Altarawneh M. CO2 capture and ions removal
                    through reaction with potassium hydroxide in desalination reject brine: Statistical optimization. Chem Eng Process Process Intensif
                    2022;170:108722.  DOI
               141.      Ho  H,  Iizuka  A.  Mineral  carbonation  using  seawater  for  CO   sequestration  and  utilization:  a  review.  Sep  Purif  Technol
                                                               2
                    2023;307:122855.  DOI
               142.      Kucka L, Kenig EY, Górak A. Kinetics of the gas - liquid reaction between carbon dioxide and hydroxide ions. Ind Eng Chem Res
                    2002;41:5952-7.  DOI
               143.      Rajappan A, Jumet B, Preston DJ. Pneumatic soft robots take a step toward autonomy. Sci Robot 2021;6:eabg6994.  DOI
               144.      Drotman D, Jadhav S, Sharp D, Chan C, Tolley MT. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci Robot
                    2021;6:eaay2627.  DOI  PubMed
               145.      Mosadegh B, Kuo CH, Tung YC, et al. Integrated elastomeric components for autonomous regulation of sequential and oscillatory
                    flow switching in microfluidic devices. Nat Phys 2010;6:433-7.  DOI  PubMed  PMC
               146.      Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly. Adv Funct Mater
                    2014;24:2163-70.  DOI
               147.      Su M, Xie R, Zhang Y, et al. Pneumatic soft actuator with anisotropic soft and rigid restraints for pure in-plane bending motion. Appl
                    Sci 2019;9:2999.  DOI
               148.      Gorissen B, Melancon D, Vasios N, Torbati M, Bertoldi K. Inflatable soft jumper inspired by shell snapping.  Sci Robot
                    2020;5:eabb1967.  DOI  PubMed
               149.      Rothemund P, Ainla A, Belding L, et al. A soft, bistable valve for autonomous control of soft actuators. Sci Robot 2018;3:eaar7986.
                    DOI
               150.      Philamore H, Rossiter J, Stinchcombe A, Ieropoulos I. Row-bot: an energetically autonomous artificial water boatman. In: 2015
   73   74   75   76   77   78   79   80   81   82   83