Page 75 - Read Online
P. 75
Villeda-Hernandez et al. Soft Sci 2024;4:14 https://dx.doi.org/10.20517/ss.2023.52 Page 31 of 35
32. Wang J, Gao D, Lee PS. Recent progress in artificial muscles for interactive soft robotics. Adv Mater 2021;33:e2003088. DOI
PubMed
33. Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater 2017;29:1603483. DOI PubMed
34. Autumn K, Majidi C, Groff RE, Dittmore A, Fearing R. Effective elastic modulus of isolated gecko setal arrays. J Exp Biol
2006;209:3558-68. DOI PubMed
35. Coyle S, Majidi C, Leduc P, Hsia KJ. Bio-inspired soft robotics: material selection, actuation, and design. Extrem Mech Lett
2018;22:51-9. DOI
36. Peng Y, Serfass CM, Kawazoe A, et al. Elastohydrodynamic friction of robotic and human fingers on soft micropatterned substrates.
Nat Mater 2021;20:1707-11. DOI
37. Luo M, Skorina EH, Tao W, Chen F, Onal CD. Optimized design of a rigid kinematic module for antagonistic soft actuation. In: 2015
IEEE Conference on Technologies for Practical Robot Applications (TePRA); 2015 May 11-12; Woburn, MA, USA. IEEE; 2015. pp.
1-6. DOI
38. Hu W, Mutlu R, Li W, Alici G. A structural optimisation method for a soft pneumatic actuator. Robotics 2018;7:24. DOI
39. Jiao Z, Ji C, Zou J, Yang H, Pan M. Vacuum-powered soft pneumatic twisting actuators to empower new capabilities for soft robots.
Adv Mater Technol 2019;4:1800429. DOI
40. Das B, Wang Y. Isometric pull-push strengths in workspace: 1. strength profiles. Int J Occup Saf Ergon 2004;10:43-58. DOI
PubMed
41. Fahal IH, Bell GM, Bone JM, Edwards RH. Physiological abnormalities of skeletal muscle in dialysis patients. Nephrol Dial
Transplant 1997;12:119-27. DOI PubMed
42. Nilsen T, Hermann M, Eriksen CS, Dagfinrud H, Mowinckel P, Kjeken I. Grip force and pinch grip in an adult population: reference
values and factors associated with grip force. Scand J Occup Ther 2012;19:288-96. DOI
43. Ling L, Malmfred S, Thesleff P. Solid-sphere test for examination of anal sphincter strength. Scand J Gastroenterol 1984;19:960-4.
DOI PubMed
44. Xu HQ, Xue YT, Zhou ZJ, et al. Review of: Retentive capacity of power output and linear versus non-linear mapping of power loss
in the isotonic muscular endurance test. Sci Rep 2021;11:22677. DOI
45. Yap HK, Ng HY, Yeow C. High-force soft printable pneumatics for soft robotic applications. Soft Robot 2016;3:144-58. DOI
46. Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I. The weight of nations: an estimation of adult human
biomass. BMC Public Health 2012;12:439. DOI PubMed PMC
47. Suulker C, Skach S, Althoefer K. A fabric soft robotic exoskeleton with novel elastic band integrated actuators for hand
rehabilitation. arXiv. [Preprint.] Dec 14, 2022 [accessed 2024 Mar 27]. Available from: https://arxiv.org/abs/2212.07206.
48. Baeten J, Donné K, Boedrij S, Beckers W, Claesen E. Autonomous fruit picking machine: a robotic apple harvester. In: Laugier C,
Siegwart R, editors. Field and service robotics. Heidelberg, Berlin: Springer; 2008. pp. 531-9. DOI
49. Liu Z, Lu Z, Karydis K. SoRX: a soft pneumatic hexapedal robot to traverse rough, steep, and unstable terrain. In: 2020 IEEE
International Conference on Robotics and Automation (ICRA);2020 May 31 - Aug 31; Paris, France. IEEE; 2020. pp. 420-6. DOI
50. Hashem R, Stommel M, Cheng LK, Xu W. Design and characterization of a bellows-driven soft pneumatic actuator. IEEE/ASME
Trans Mechatron 2021;26:2327-38. DOI
51. Chen G, Lin T, Ding S, Chen S, Ji A, Lodewijks G. Design and test of an active pneumatic soft wrist for soft grippers. Actuators
2022;11:311. DOI
52. Son H, Park Y, Na Y, Yoon C. 4D multiscale origami soft robots: a review. Polymers 2022;14:4235. DOI PubMed PMC
53. Ai C, Chen Y, Xu L, et al. Current development on origami/kirigami-inspired structure of creased patterns toward robotics. Adv Eng
Mater 2021;23:2100473. DOI
54. Jin L, Forte AE, Deng B, Rafsanjani A, Bertoldi K. Kirigami-inspired inflatables with programmable shapes. Adv Mater
2020;32:e2001863. DOI PubMed
55. Melancon D, Gorissen B, García-Mora CJ, Hoberman C, Bertoldi K. Multistable inflatable origami structures at the metre scale.
Nature 2021;592:545-50. DOI PubMed
56. Melancon D, Forte AE, Kamp LM, Gorissen B, Bertoldi K. Inflatable origami: multimodal deformation via multistability. Adv Funct
Mater 2022;32:2201891. DOI
57. Polygerinos P, Lyne S, Wang Z, et al. Towards a soft pneumatic glove for hand rehabilitation. In: 2013 IEEE International
Conference on Intelligent Robots and Systems; 2013 Nov 3-7; Tokyo, Japan. IEEE; 2013. pp. 1512-7. DOI
58. De Benedictis C, Franco W, Maffiodo D, Ferraresi C. Hand rehabilitation device actuated by a pneumatic muscle. In: Aspragathos N,
Koustoumpardis P, Moulianitis V, editors. Advances in service and industrial robotics. Cham: Springer; 2019. pp. 102-11. DOI
59. Raparelli T, Zobel PB, Durante F, Antonelli M, Raimondi P, Costanzo G. First clinical investigation on a pneumatic lumbar
unloading orthosis. In: 2007 IEEE/ICME International Conference on Complex Medical Engineering; 2007 May 23-27; Beijing,
China. IEEE; 2007. pp. 1327-30. DOI
60. Ahmadjou A, Sadeghi S, Zareinejad M, Talebi HA. A compact valveless pressure control source for soft rehabilitation glove. Int J
Med Robot 2021;17:e2298. DOI PubMed
61. Kim SJ, Chang H, Park J, Kim J. Design of a portable pneumatic power source with high output pressure for wearable robotic
applications. IEEE Robot Autom Lett 2018;3:4351-8. DOI
62. Chun HTD, Roberts JO, Sayed ME, Aracri S, Stokes AA. Towards more energy efficient pneumatic soft actuators using a port-

