Page 76 - Read Online
P. 76
Page 32 of 35 Villeda-Hernandez et al. Soft Sci 2024;4:14 https://dx.doi.org/10.20517/ss.2023.52
hamiltonian approach. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft); 2019 Apr 14-18; Seoul, Korea
(South). IEEE; 2019. pp. 277-82. DOI
63. Gonzalez D, Garcia J, Voyles RM, Nawrocki RA, Newell B. Characterization of 3D printed pneumatic soft actuator. Sens Actuators
A Phys 2022;334:113337. DOI
64. Robertson MA, Sadeghi H, Florez JM, Paik J. Soft pneumatic actuator fascicles for high force and reliability. Soft Robot 2017;4:23-
32. DOI PubMed PMC
65. Wilkening A, Mihajlov M, Ivlev O. Model-based pressure and torque control for innovative pneumatic soft-actuators. In: 7th
International Fluid Power Conference. 2010. pp. 1-12. Available from: https://www.researchgate.net/profile/Oleg-Ivlev/publication/
267859903_Model-Based_Pressure_and_Torque_Control_for_Innovative_Pneumatic_Soft-Actuators/links/
54ae4c6e0cf24aca1c6f90c7/Model-Based-Pressure-and-Torque-Control-for-Innovative-Pneumatic-Soft-Actuators.pdf. [Last accessed
on 27 March 2024].
66. Breitman P, Matia Y, Gat AD. Fluid mechanics of pneumatic soft robots. Soft Robot 2021;8:519-30. DOI PubMed
67. Wehner M, Tolley MT, Mengüç Y, et al. Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robot
2014;1:263-74. DOI
68. Niiyama R, Rus D, Kim S. Pouch motors: printable/inflatable soft actuators for robotics. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA); 2014 May 31 - Jun 7; Hong Kong, China. IEEE; 2014. pp. 6332-7. DOI
69. Diteesawat RS, Helps T, Taghavi M, Rossiter J. Electro-pneumatic pumps for soft robotics. Sci Robot 2021;6:eabc3721. DOI
PubMed
70. Wehner M, Truby RL, Fitzgerald DJ, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature
2016;536:451-5. DOI
71. Kim KR, Shin YJ, Kim KS, Kim S. Application of chemical reaction based pneumatic power generator to robot finger. In. 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3-7; Tokyo, Japan. IEEE; 2013. pp. 4906-11. DOI
72. Boyle R. A defence of the doctrine touching the spring and weight of the air propos’d by Mr. R. Boyle in his new physico-mechanical
experiments, against the objections of Franciscus Linus; wherewith the objector’s funicular hypothesis is also examin’d, by the author
of those experiments. Available from: https://quod.lib.umich.edu/e/eebo/A28956.0001.001?view=toc. [Last accessed on 27 March
2024]
73. Gay-Lussac LJ. The expansion of gases by heat. Available from: https://web.lemoyne.edu/~giunta/gaygas.html. [Last accessed on 29
March 2024]
74. Avogadro A. Essay on a manner of determining the relative masses of the elementary molecules of bodies, and the proportions in
which they enter into these compounds. 1811. Available from: https://web.lemoyne.edu/~giunta/avogadro.html. [Last accessed on 29
March 2024]
75. Lee J, Yoon Y, Park H, et al. Bioinspired soft robotic fish for wireless underwater control of gliding locomotion. Adv Intell Syst
2022;4:2100271. DOI
76. Silbey RJ, Alberty RA, Papadantonakis GA, Bawendi MG. Physical chemistry. John Wiley & Sons; 2022. Available from: https://
books.google.com/books/about/Physical_Chemistry.html?id=SMd3NAEACAAJ. [Last accessed on 27 March 2024].
77. Atkins P, Overton T, Rourke J, Weller M, Armstrong F. Shriver and Atkins’ inorganic chemistry. 5th ed. Oxford University Press;
2009. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=tUmcAQAAQBAJ&oi=fnd&pg=PP2&dq=Atkins+P,+
Overton+T,+Rourke+J,+Weller+M,+Armstrong+F.+Shriver+and+Atkins%E2%80%99+inorganic+chemistry&ots=i47SGsARce&
sig=-iOikgfZRVmAH2D04fTFWonHSFg. [Last accessed on 27 March 2024].
78. Adami M, Seibel A. On-board pneumatic pressure generation methods for soft robotics applications. Actuators 2019;8:2. DOI
79. Tolley MT, Shepherd RF, Mosadegh B, et al. A resilient, untethered soft robot. Soft Robot 2014;1:213-23. DOI
80. Prince JC, Treviño C, Williams FA. A reduced reaction mechanism for the combustion of n-butane. Combust Flame 2017;175:27-33.
DOI
81. Warnatz J. The mechanism of high temperature combustion of propane and butane. Combust Sci Technol 1983;34:177-200. DOI
82. Onal CD, Chen X, Whitesides GM, Rus D. Soft mobile robots with on-board chemical pressure generation. In: Christensen H, Khatib
O, editors. Robotics research. Cham: Springer; 2017. pp. 525-40. DOI
83. Goldfarb M, Barth E, Gogola M, Wehrmeyer J. Design and energetic characterization of a liquid-propellant-powered actuator for
self-powered robots. IEEE/ASME Trans Mechatron 2003;8:254-62. DOI
84. Okui M, Nagura Y, Iikawa S, Yamada Y, Nakamura T. A pneumatic power source using a sodium bicarbonate and citric acid
reaction with pressure booster for use in mobile devices. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS); 2017 Sep 24-28; Vancouver, BC, Canada. IEEE; 2017, pp. 1040-5. DOI
85. Kitamori T, Wada A, Nabae H, Suzumori K. Untethered three-arm pneumatic robot using hose-free pneumatic actuator. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9-14; Daejeon, Korea (South). IEEE; 2016,
pp. 543-8. DOI
86. Hosono M, Ino S, Sato M, Yamashita K, Izumi T. A system utilizing metal hydride actuators to achieve passive motion of toe joints
for prevention of pressure ulcers: a pilot study. Rehabil Res Pract 2012;2012:541383. DOI PubMed PMC
87. Nishikawa Y, Matsumoto M. A design of fully soft robot actuated by gas-liquid phase change. Adv Robot 2019;33:567-75. DOI
88. Shepherd RF, Stokes AA, Freake J, et al. Using explosions to power a soft robot. Angew Chem Int Ed Engl 2013;52:2892-6. DOI
89. Heisser RH, Aubin CA, Peretz O, et al. Valveless microliter combustion for densely packed arrays of powerful soft actuators. Proc

