Page 76 - Read Online
P. 76

Page 32 of 35                  Villeda-Hernandez et al. Soft Sci 2024;4:14  https://dx.doi.org/10.20517/ss.2023.52

                    hamiltonian approach. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft); 2019 Apr 14-18; Seoul, Korea
                    (South). IEEE; 2019. pp. 277-82.  DOI
               63.       Gonzalez D, Garcia J, Voyles RM, Nawrocki RA, Newell B. Characterization of 3D printed pneumatic soft actuator. Sens Actuators
                    A Phys 2022;334:113337.  DOI
               64.       Robertson MA, Sadeghi H, Florez JM, Paik J. Soft pneumatic actuator fascicles for high force and reliability. Soft Robot 2017;4:23-
                    32.  DOI  PubMed  PMC
               65.       Wilkening A, Mihajlov M, Ivlev O. Model-based pressure and torque control for innovative pneumatic soft-actuators. In: 7th
                    International Fluid Power Conference. 2010. pp. 1-12. Available from: https://www.researchgate.net/profile/Oleg-Ivlev/publication/
                    267859903_Model-Based_Pressure_and_Torque_Control_for_Innovative_Pneumatic_Soft-Actuators/links/
                    54ae4c6e0cf24aca1c6f90c7/Model-Based-Pressure-and-Torque-Control-for-Innovative-Pneumatic-Soft-Actuators.pdf. [Last accessed
                    on 27 March 2024].
               66.       Breitman P, Matia Y, Gat AD. Fluid mechanics of pneumatic soft robots. Soft Robot 2021;8:519-30.  DOI  PubMed
               67.       Wehner M, Tolley MT, Mengüç Y, et al. Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robot
                    2014;1:263-74.  DOI
               68.       Niiyama R, Rus D, Kim S. Pouch motors: printable/inflatable soft actuators for robotics. In: 2014 IEEE International Conference on
                    Robotics and Automation (ICRA); 2014 May 31 - Jun 7; Hong Kong, China. IEEE; 2014. pp. 6332-7.  DOI
               69.       Diteesawat RS, Helps T, Taghavi M, Rossiter J. Electro-pneumatic pumps for soft robotics. Sci Robot 2021;6:eabc3721.  DOI
                    PubMed
               70.       Wehner M, Truby RL, Fitzgerald DJ, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature
                    2016;536:451-5.  DOI
               71.       Kim KR, Shin YJ, Kim KS, Kim S. Application of chemical reaction based pneumatic power generator to robot finger. In. 2013
                    IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3-7; Tokyo, Japan. IEEE; 2013. pp. 4906-11.  DOI
               72.       Boyle R. A defence of the doctrine touching the spring and weight of the air propos’d by Mr. R. Boyle in his new physico-mechanical
                    experiments, against the objections of Franciscus Linus; wherewith the objector’s funicular hypothesis is also examin’d, by the author
                    of those experiments. Available from: https://quod.lib.umich.edu/e/eebo/A28956.0001.001?view=toc. [Last accessed on 27 March
                    2024]
               73.       Gay-Lussac LJ. The expansion of gases by heat. Available from: https://web.lemoyne.edu/~giunta/gaygas.html. [Last accessed on 29
                    March 2024]
               74.       Avogadro A. Essay on a manner of determining the relative masses of the elementary molecules of bodies, and the proportions in
                    which they enter into these compounds. 1811. Available from: https://web.lemoyne.edu/~giunta/avogadro.html. [Last accessed on 29
                    March 2024]
               75.       Lee J, Yoon Y, Park H, et al. Bioinspired soft robotic fish for wireless underwater control of gliding locomotion. Adv Intell Syst
                    2022;4:2100271.  DOI
               76.       Silbey RJ, Alberty RA, Papadantonakis GA, Bawendi MG. Physical chemistry. John Wiley & Sons; 2022. Available from: https://
                    books.google.com/books/about/Physical_Chemistry.html?id=SMd3NAEACAAJ. [Last accessed on 27 March 2024].
               77.       Atkins P, Overton T, Rourke J, Weller M, Armstrong F. Shriver and Atkins’ inorganic chemistry. 5th ed. Oxford University Press;
                    2009. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=tUmcAQAAQBAJ&oi=fnd&pg=PP2&dq=Atkins+P,+
                    Overton+T,+Rourke+J,+Weller+M,+Armstrong+F.+Shriver+and+Atkins%E2%80%99+inorganic+chemistry&ots=i47SGsARce&
                    sig=-iOikgfZRVmAH2D04fTFWonHSFg. [Last accessed on 27 March 2024].
               78.       Adami M, Seibel A. On-board pneumatic pressure generation methods for soft robotics applications. Actuators 2019;8:2.  DOI
               79.       Tolley MT, Shepherd RF, Mosadegh B, et al. A resilient, untethered soft robot. Soft Robot 2014;1:213-23.  DOI
               80.       Prince JC, Treviño C, Williams FA. A reduced reaction mechanism for the combustion of n-butane. Combust Flame 2017;175:27-33.
                    DOI
               81.      Warnatz J. The mechanism of high temperature combustion of propane and butane. Combust Sci Technol 1983;34:177-200.  DOI
               82.       Onal CD, Chen X, Whitesides GM, Rus D. Soft mobile robots with on-board chemical pressure generation. In: Christensen H, Khatib
                    O, editors. Robotics research. Cham: Springer; 2017. pp. 525-40.  DOI
               83.       Goldfarb M, Barth E, Gogola M, Wehrmeyer J. Design and energetic characterization of a liquid-propellant-powered actuator for
                    self-powered robots. IEEE/ASME Trans Mechatron 2003;8:254-62.  DOI
               84.       Okui M, Nagura Y, Iikawa S, Yamada Y, Nakamura T. A pneumatic power source using a sodium bicarbonate and citric acid
                    reaction with pressure booster for use in mobile devices. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
                    Systems (IROS); 2017 Sep 24-28; Vancouver, BC, Canada. IEEE; 2017, pp. 1040-5.  DOI
               85.       Kitamori T, Wada A, Nabae H, Suzumori K. Untethered three-arm pneumatic robot using hose-free pneumatic actuator. In: 2016
                    IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9-14; Daejeon, Korea (South). IEEE; 2016,
                    pp. 543-8.  DOI
               86.       Hosono M, Ino S, Sato M, Yamashita K, Izumi T. A system utilizing metal hydride actuators to achieve passive motion of toe joints
                    for prevention of pressure ulcers: a pilot study. Rehabil Res Pract 2012;2012:541383.  DOI  PubMed  PMC
               87.       Nishikawa Y, Matsumoto M. A design of fully soft robot actuated by gas-liquid phase change. Adv Robot 2019;33:567-75.  DOI
               88.       Shepherd RF, Stokes AA, Freake J, et al. Using explosions to power a soft robot. Angew Chem Int Ed Engl 2013;52:2892-6.  DOI
               89.       Heisser RH, Aubin CA, Peretz O, et al. Valveless microliter combustion for densely packed arrays of powerful soft actuators. Proc
   71   72   73   74   75   76   77   78   79   80   81