Page 77 - Read Online
P. 77
Villeda-Hernandez et al. Soft Sci 2024;4:14 https://dx.doi.org/10.20517/ss.2023.52 Page 33 of 35
Natl Acad Sci U S A 2021;118:e2106553118. DOI PubMed PMC
90. Timm S, Mielewczik M, Florian A, et al. High-to-low CO acclimation reveals plasticity of the photorespiratory pathway and
2
indicates regulatory links to cellular metabolism of Arabidopsis. PLoS One 2012;7:e42809. DOI PubMed PMC
91. Gilbert PUPA, Bergmann KD, Boekelheide N, et al. Biomineralization: integrating mechanism and evolutionary history. Sci Adv
2022;8:eabl9653. DOI PubMed PMC
92. Ciria-Recasens M, Blanch-Rubió J, Coll-Batet M, et al. Comparison of the effects of ossein-hydroxyapatite complex and calcium
carbonate on bone metabolism in women with senile osteoporosis: a randomized, open-label, parallel-group, controlled, prospective
study. Clin Drug Investig 2011;31:817-24. DOI
93. Atkins P, De Paula J, Keeler J. Atkins’ physical chemistry. Oxford University Press; 2018. Available from: https://books.google.com/
books?hl=zh-CN&lr=&id=4gamEAAAQBAJ&oi=fnd&pg=PP1&dq=Atkins+P,+De+Paula+J,+Keeler+J.+Atkins%E2%80%99+
physical+chemistry:+thermodynamics+and+kinetics&ots=g44xWkOtwq&sig=c0hqCEksMQCwIzpOw3qoav1wKfc#v=onepage&q&
f=false. [Last accessed on 27 March 2024].
94. Mumallah NA. Factors influencing the reaction rate of hydrochloric acid and carbonate rock. In: the SPE International Symposium on
Oilfield Chemistry, Anaheim, California, February 1991. Available from: https://onepetro.org/SPEOCC/proceedings-abstract/91OCS/
All-91OCS/SPE-21036-MS/53568. [Last accessed on 27 March 2024].
95. Bischoff KB. Effectiveness factors for general reaction rate forms. Aiche J 1965;11:351-5. DOI
96. Doménech P, Pogrebnyakov I, Nielsen AT, Riisager A. Catalytic production of long-chain hydrocarbons suitable for jet-fuel use from
fermentation-derived oxygenates. Green Chem 2022;24:3461-74. DOI
97. Wang S, Zhang T, Bao M, Su H, Xu P. Microbial production of hydrogen by mixed culture technologies: a review. Biotechnol J
2020;15:e1900297. DOI
98. Soccol CR, Pandey A, Larroche C. Fermentation processes engineering in the food industry. 1st ed. CRC Press; 2013, pp. 1-464.
DOI
99. Dagle VL, Smith C, Flake M, et al. Integrated process for the catalytic conversion of biomass-derived syngas into transportation
fuels. Green Chem 2016;18:1880-91. DOI
100. Chakik FE, Kaddami M, Mikou M. Effect of operating parameters on hydrogen production by electrolysis of water. Int J Hydrogen
Energy 2017;42:25550-7. DOI
101. Symons MCR. 809. The mechanism of decomposition of potassium permanganate in alkaline solution and its bearing on oxidation by
this reagent. J Chem Soc 1953:3956-61. DOI
102. Janudin N, Kasim NAM, Knight VF, et al. Sensing techniques on determination of chlorine gas and free chlorine in water. J Sensors
2022;2022:1898417. DOI
103. Atkins P. Reactions: the private life of atoms. Oxford Academic; 2011. pp. 191. DOI
104. Giaretta JE, Duan H, Oveissi F, Farajikhah S, Dehghani F, Naficy S. Flexible sensors for hydrogen peroxide detection: a critical
review. ACS Appl Mater Interfaces 2022;14:20491-505. DOI PubMed PMC
105. Hu L, Tao K, Miao J, Grüber G. Hydrogen-peroxide-fuelled platinum-nickel-SU-8 microrocket with steerable propulsion using an
eccentric nanoengine. RSC Adv 2016;6:102513-8. DOI
106. Kopacz W, Okninski A, Kasztankiewicz A, Nowakowski P, Rarata G, Maksimowski P. Hydrogen peroxide - a promising oxidizer for
rocket propulsion and its application in solid rocket propellants. FirePhysChem 2022;2:56-66. DOI
107. Castillo E, Vilke G. Road traffic accidents: air bag-related injuries and deaths. encyclopedia of forensic and legal medicine. Elsevier;
2016. pp. 162-74. DOI
108. Oxtoby DW, Gillis HP, Butler LJ. Principles of modern chemistry. 8th ed. Cengage Learning; 2016. pp. 993. Available from: https://
books.google.com/books?hl=zh-CN&lr=&id=IQGEDwAAQBAJ&oi=fnd&pg=PP1&dq=Oxtoby+DW,+Gillis+HP,+Butler+LJ.+
Principles+of+Modern+Chemistry&ots=16S2ZBOdDy&sig=oapaY9RHEUzsBEcv5MhBKiaAVDA#v=onepage&q&f=false. [Last
accessed on 27 March 2024].
109. Miriyev A, Stack K, Lipson H. Soft material for soft actuators. Nat Commun 2017;8:596. DOI PubMed PMC
110. Mehmandoust B, Sanjari E, Vatani M. An efficient reliable method to estimate the vaporization enthalpy of pure substances
according to the normal boiling temperature and critical properties. J Adv Res 2014;5:261-9. DOI PubMed PMC
111. Cheng P, Ye Y, Jia J, Wu C, Xie Q. Design of cylindrical soft vacuum actuator for soft robots. Smart Mater Struct 2021;30:045020.
DOI
112. Miyazaki H, Uozaki H, Tojo A, et al. Application of low-vacuum scanning electron microscopy for renal biopsy specimens. Pathol
Res Pract 2012;208:503-9. DOI
113. Tawk C, In Het Panhuis M, Spinks GM, Alici G. Bioinspired 3D printable soft vacuum actuators for locomotion robots, grippers and
artificial muscles. Soft Robot 2018;5:685-94. DOI PubMed
114. Yang D, Verma MS, Lossner E, Stothers D, Whitesides GM. Negative-pressure soft linear actuator with a mechanical advantage. Adv
Mater Technol 2017;2:1600164. DOI
115. Fatahillah M, Oh N, Rodrigue H. A novel soft bending actuator using combined positive and negative pressures. Front Bioeng
Biotechnol 2020;8:472. DOI PubMed PMC
116. Tawk C, Alici G. A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities. Adv Intell
Syst 2021;3:2000223. DOI
117. Pitzer KS. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys Chem 1973;77:268-77. DOI

