Page 30 - Read Online
P. 30

Page 16 of 20                             Li et al. Soft Sci 2023;3:37  https://dx.doi.org/10.20517/ss.2023.30

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Ma B, Xu C, Chi J, Chen J, Zhao C, Liu H. A versatile approach for direct patterning of liquid metal using magnetic field. Adv Funct
                    Mater 2019;29:1901370.  DOI
               2.       Zhou X, Zhang Y, Yang J, Li J, Luo S, Wei D. Flexible and highly sensitive pressure sensors based on microstructured carbon
                    nanowalls electrodes. Nanomaterials 2019;9:496.  DOI  PubMed  PMC
               3.       Jiang Y, Liu Z, Matsuhisa N, et al. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv Mater
                    2018;30:e1706589.  DOI
               4.       Li H, Xu Y, Li X, et al. Epidermal inorganic optoelectronics for blood oxygen measurement. Adv Healthc Mater 2017;6:1601013.
                    DOI
               5.       Jiao B. Anti-motion interference wearable device for monitoring blood oxygen saturation based on sliding window algorithm. IEEE
                    Access 2020;8:124675-87.  DOI
               6.       Liu Z, Qi D, Hu G, et al. Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable
                    strain sensors. Adv Mater 2018;30:1704229.  DOI
               7.       Liao X, Zhang Z, Kang Z, Gao F, Liao Q, Zhang Y. Ultrasensitive and stretchable resistive strain sensors designed for wearable
                    electronics. Mater Horiz 2017;4:502-10.  DOI
               8.       Zhang M, Wang C, Wang H, Jian M, Hao X, Zhang Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv
                    Funct Mater 2017;27:1604795.  DOI
               9.       Maier D, Laubender E, Basavanna A, et al. Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for
                    real-time hydrogen peroxide measurement in simulated breath. ACS Sens 2019;4:2945-51.  DOI  PubMed  PMC
               10.       Veeralingam S, Khandelwal S, Sha R, Badhulika S. Direct growth of FeS  on paper: a flexible, multifunctional platform for ultra-low
                                                                   2
                    cost, low power memristor and wearable non-contact breath sensor for activity detection. Mat Sci Semicon Proc 2020;108:104910.
                    DOI
               11.       Liu Z, Wang H, Huang P, et al. Highly stable and stretchable conductive films through thermal-radiation-assisted metal
                    encapsulation. Adv Mater 2019;31:1901360.  DOI
               12.       Jeong YR, Lee G, Park H, Ha JS. Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal
                    monitoring. Acc Chem Res 2019;52:91-9.  DOI
               13.       Wei C, Tan L, Tao Y, et al. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries
                    in commercial carbonate-based electrolyte. Energy Stor Mater 2021;34:12-21.  DOI
               14.       Wei C, Tan L, Zhang Y, et al. Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy
                    Mg-S batteries. Energy Stor Mater 2022;48:447-57.  DOI
               15.       Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425.  DOI  PubMed
               16.       Zhu S, So J, Mays R, et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater
                    2013;23:2308-14.  DOI
               17.       Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM. Eutectic Gallium-Indium (EGaIn): a liquid metal alloy
                    for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 2008;18:1097-104.  DOI
               18.       Yang X, Tan S, Liu J. Numerical investigation of the phase change process of low melting point metal. Int J Heat Mass Transf
                    2016;100:899-907.  DOI
               19.       Liu S, Sweatman K, McDonald S, Nogita K. Ga-based alloys in microelectronic interconnects: a review. Materials 2018;11:1384.
                    DOI  PubMed  PMC
               20.       Zhang M, Li G, Huang L, et al. Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl Mater Today
                    2021;22:100903.  DOI
               21.       Sun X, Cui B, Yuan B, et al. Liquid metal microparticles phase change medicated mechanical destruction for enhanced tumor
                    cryoablation and dual-mode imaging. Adv Funct Mater 2020;30:2003359.  DOI
               22.       Gao Q, Li H, Zhang J, Xie Z, Zhang J, Wang L. Microchannel structural design for a room-temperature liquid metal based super-
                    stretchable sensor. Sci Rep 2019;9:5908.  DOI  PubMed  PMC
               23.       Gao Y, Ota H, Schaler EW, et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv
                    Mater 2017;29:1701985.  DOI
               24.       Chang H, Guo R, Sun Z, et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv Mater
   25   26   27   28   29   30   31   32   33   34   35