Page 31 - Read Online
P. 31

Li et al. Soft Sci 2023;3:37  https://dx.doi.org/10.20517/ss.2023.30            Page 17 of 20
                    Interfaces 2018;5:1800571.  DOI
               25.       Kim S, Oh J, Jeong D, Bae J. Direct wiring of eutectic gallium-indium to a metal electrode for soft sensor systems. ACS Appl Mater
                    Interfaces 2019;11:20557-65.  DOI
               26.       Yoon Y, Kim S, Kim D, Kauh SK, Lee J. Four degrees-of-freedom direct writing of liquid metal patterns on uneven surfaces. Adv
                    Mater Technol 2019;4:1800379.  DOI
               27.       Guo C, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal
                    spraying and pre-designed mask. J Mater Chem B 2014;2:5739-45.  DOI
               28.       Plevachuk Y, Sklyarchuk V, Shevchenko N, Eckert S. Electrophysical and structure-sensitive properties of liquid Ga-In alloys. Int J
                    Mater Res 2015;106:66-71.  DOI
               29.       Plevachuk Y, Sklyarchuk V, Eckert S, Gerbeth G, Novakovic R. Thermophysical properties of the liquid Ga-In-Sn eutectic alloy. J
                    Chem Eng Data 2014;59:757-63.  DOI
               30.       Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nat Commun 2015;6:10066.  DOI  PubMed  PMC
               31.       Cicco AD, Filipponi A. Local correlations in liquid and supercooled gallium probed by X-ray absorption spectroscopy. Europhys Lett
                    1994;27:407-12.  DOI
               32.      Tang S, Mitchell DR, Zhao Q, et al. Phase separation in liquid metal nanoparticles. Matter 2019;1:192-204.  DOI
               33.      Koster JN. Directional solidification and melting of eutectic GaIn. Cryst Res Technol 1999;34:1129-40.  Available from: https://onlinelibrary.
                           wiley.com/doi/abs/10.1002/(SICI)1521-4079(199911)34:9%3C1129::AID-CRAT1129%3E3.0.CO;2-P. [Last accessed on 24 Aug 2023].
               34.       Chitambar CR. Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 2010;7:2337-61.  DOI
                    PubMed  PMC
               35.       White SJO, Shine JP. Exposure potential and health impacts of indium and gallium, metals critical to emerging electronics and energy
                    technologies. Curr Environ Health Rep 2016;3:459-67.  DOI  PubMed
               36.       Li J, Guo C, Wang Z, Gao K, Shi X, Liu J. Electrical stimulation towards melanoma therapy via liquid metal printed electronics on
                    skin. Clin Transl Med 2016;5:21.  DOI  PubMed  PMC
               37.       Fan L, Duan M, Xie Z, et al. Injectable and radiopaque liquid metal/calcium alginate hydrogels for endovascular embolization and
                    tumor embolotherapy. Small 2019;16:1903421.  DOI
               38.       Hallfors N, Khan A, Dickey MD, Taylor AM. Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-
                    friendly microfluidic platform. Lab Chip 2013;13:522-6.  DOI  PubMed  PMC
               39.       Zhang M, Yao S, Rao W, Liu J. Transformable soft liquid metal micro/nanomaterials. Mate Sci Eng R Rep 2019;138:1-35.  DOI
               40.       Domingo JL, Corbella J. A review of the health hazards from gallium exposure. Trace Elem Med 1991;8:56-64. Available from:
                    https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5304637. [Last accessed on 24 Aug 2023].
               41.       Liu S, Sun X, Kemme N, et al. Can liquid metal flow in microchannels made of its own oxide skin? Microfluid Nanofluid 2016;20:3.
                    DOI
               42.       Regan MJ, Tostmann H, Pershan PS, et al. X-ray study of the oxidation of liquid-gallium surfaces. Phys Rev B 1997;55:10786-90.
                    DOI
                                                                   TS
               43.       Cademartiri L, Thuo MM, Nijhuis CA, et al. Electrical resistance of Ag -S(CH ) CH //Ga O /EGaIn tunneling junctions. J Phys
                                                                         2 n-1  3  2  3
                    Chem C 2012;116:10848-60.  DOI
               44.       Dickey MD. Emerging applications of liquid metals featuring surface oxides. ACS Appl Mater Interfaces 2014;6:18369-79.  DOI
                    PubMed  PMC
               45.       Zhang Q, Gao Y, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous
                    printed electronics. Appl Phys A 2014;116:1091-7.  DOI
               46.       Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 2012;7:e45485.  DOI
                    PubMed  PMC
               47.       Zheng Y, He ZZ, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion
                    mechanism. Sci Rep 2014;4:4588.  DOI  PubMed  PMC
               48.       Tang L, Cheng S, Zhang L, et al. Printable metal-polymer conductors for highly stretchable bio-devices. iScience 2018;4:302-11.
                    DOI  PubMed  PMC
               49.       Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater 2015;27:2355-60.  DOI  PubMed
               50.       Ren L, Zhuang J, Casillas G, et al. Nanodroplets for stretchable superconducting circuits. Adv Funct Mater 2016;26:8111-8.  DOI
               51.       Li X, Li M, Zong L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible
                    conductive devices. Adv Funct Mater 2018;28:1804197.  DOI
               52.       Li H, Qiao R, Davis TP, Tang SY. Biomedical applications of liquid metal nanoparticles: a critical review. Biosensors 2020;10:196.
                    DOI  PubMed  PMC
               53.       Tang S, Qiao R. Liquid metal particles and polymers: a soft-soft system with exciting properties. Acc Mater Res 2021;2:966-78.  DOI
               54.       Lin Y, Cooper C, Wang M, Adams JJ, Genzer J, Dickey MD. Handwritten, soft circuit boards and antennas using liquid metal
                    nanoparticles. Small 2015;11:6397-403.  DOI  PubMed
               55.       Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible
                    electronics. ACS Appl Mater Interfaces 2018;10:28232-41.  DOI
               56.       Deng B, Cheng GJ. Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust
                    solid-liquid patterns. Adv Mater 2019;31:e1807811.  DOI  PubMed
               57.       Li X, Li M, Xu J, You J, Yang Z, Li C. Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible
   26   27   28   29   30   31   32   33   34   35   36