Page 31 - Read Online
P. 31
Li et al. Soft Sci 2023;3:37 https://dx.doi.org/10.20517/ss.2023.30 Page 17 of 20
Interfaces 2018;5:1800571. DOI
25. Kim S, Oh J, Jeong D, Bae J. Direct wiring of eutectic gallium-indium to a metal electrode for soft sensor systems. ACS Appl Mater
Interfaces 2019;11:20557-65. DOI
26. Yoon Y, Kim S, Kim D, Kauh SK, Lee J. Four degrees-of-freedom direct writing of liquid metal patterns on uneven surfaces. Adv
Mater Technol 2019;4:1800379. DOI
27. Guo C, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal
spraying and pre-designed mask. J Mater Chem B 2014;2:5739-45. DOI
28. Plevachuk Y, Sklyarchuk V, Shevchenko N, Eckert S. Electrophysical and structure-sensitive properties of liquid Ga-In alloys. Int J
Mater Res 2015;106:66-71. DOI
29. Plevachuk Y, Sklyarchuk V, Eckert S, Gerbeth G, Novakovic R. Thermophysical properties of the liquid Ga-In-Sn eutectic alloy. J
Chem Eng Data 2014;59:757-63. DOI
30. Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nat Commun 2015;6:10066. DOI PubMed PMC
31. Cicco AD, Filipponi A. Local correlations in liquid and supercooled gallium probed by X-ray absorption spectroscopy. Europhys Lett
1994;27:407-12. DOI
32. Tang S, Mitchell DR, Zhao Q, et al. Phase separation in liquid metal nanoparticles. Matter 2019;1:192-204. DOI
33. Koster JN. Directional solidification and melting of eutectic GaIn. Cryst Res Technol 1999;34:1129-40. Available from: https://onlinelibrary.
wiley.com/doi/abs/10.1002/(SICI)1521-4079(199911)34:9%3C1129::AID-CRAT1129%3E3.0.CO;2-P. [Last accessed on 24 Aug 2023].
34. Chitambar CR. Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 2010;7:2337-61. DOI
PubMed PMC
35. White SJO, Shine JP. Exposure potential and health impacts of indium and gallium, metals critical to emerging electronics and energy
technologies. Curr Environ Health Rep 2016;3:459-67. DOI PubMed
36. Li J, Guo C, Wang Z, Gao K, Shi X, Liu J. Electrical stimulation towards melanoma therapy via liquid metal printed electronics on
skin. Clin Transl Med 2016;5:21. DOI PubMed PMC
37. Fan L, Duan M, Xie Z, et al. Injectable and radiopaque liquid metal/calcium alginate hydrogels for endovascular embolization and
tumor embolotherapy. Small 2019;16:1903421. DOI
38. Hallfors N, Khan A, Dickey MD, Taylor AM. Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-
friendly microfluidic platform. Lab Chip 2013;13:522-6. DOI PubMed PMC
39. Zhang M, Yao S, Rao W, Liu J. Transformable soft liquid metal micro/nanomaterials. Mate Sci Eng R Rep 2019;138:1-35. DOI
40. Domingo JL, Corbella J. A review of the health hazards from gallium exposure. Trace Elem Med 1991;8:56-64. Available from:
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5304637. [Last accessed on 24 Aug 2023].
41. Liu S, Sun X, Kemme N, et al. Can liquid metal flow in microchannels made of its own oxide skin? Microfluid Nanofluid 2016;20:3.
DOI
42. Regan MJ, Tostmann H, Pershan PS, et al. X-ray study of the oxidation of liquid-gallium surfaces. Phys Rev B 1997;55:10786-90.
DOI
TS
43. Cademartiri L, Thuo MM, Nijhuis CA, et al. Electrical resistance of Ag -S(CH ) CH //Ga O /EGaIn tunneling junctions. J Phys
2 n-1 3 2 3
Chem C 2012;116:10848-60. DOI
44. Dickey MD. Emerging applications of liquid metals featuring surface oxides. ACS Appl Mater Interfaces 2014;6:18369-79. DOI
PubMed PMC
45. Zhang Q, Gao Y, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous
printed electronics. Appl Phys A 2014;116:1091-7. DOI
46. Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 2012;7:e45485. DOI
PubMed PMC
47. Zheng Y, He ZZ, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion
mechanism. Sci Rep 2014;4:4588. DOI PubMed PMC
48. Tang L, Cheng S, Zhang L, et al. Printable metal-polymer conductors for highly stretchable bio-devices. iScience 2018;4:302-11.
DOI PubMed PMC
49. Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater 2015;27:2355-60. DOI PubMed
50. Ren L, Zhuang J, Casillas G, et al. Nanodroplets for stretchable superconducting circuits. Adv Funct Mater 2016;26:8111-8. DOI
51. Li X, Li M, Zong L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible
conductive devices. Adv Funct Mater 2018;28:1804197. DOI
52. Li H, Qiao R, Davis TP, Tang SY. Biomedical applications of liquid metal nanoparticles: a critical review. Biosensors 2020;10:196.
DOI PubMed PMC
53. Tang S, Qiao R. Liquid metal particles and polymers: a soft-soft system with exciting properties. Acc Mater Res 2021;2:966-78. DOI
54. Lin Y, Cooper C, Wang M, Adams JJ, Genzer J, Dickey MD. Handwritten, soft circuit boards and antennas using liquid metal
nanoparticles. Small 2015;11:6397-403. DOI PubMed
55. Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible
electronics. ACS Appl Mater Interfaces 2018;10:28232-41. DOI
56. Deng B, Cheng GJ. Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust
solid-liquid patterns. Adv Mater 2019;31:e1807811. DOI PubMed
57. Li X, Li M, Xu J, You J, Yang Z, Li C. Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible

