Page 33 - Read Online
P. 33
Li et al. Soft Sci 2023;3:37 https://dx.doi.org/10.20517/ss.2023.30 Page 19 of 20
Interfaces 2019;11:30019-27. DOI
89. Guo R, Cui B, Zhao X, et al. Cu-EGaIn enabled stretchable e-skin for interactive electronics and CT assistant localization. Mater
Horiz 2020;7:1845-53. DOI
90. Wang J, Cai G, Li S, Gao D, Xiong J, Lee PS. Printable superelastic conductors with extreme stretchability and robust cycling
endurance enabled by liquid-metal particles. Adv Mater 2018;30:e1706157. DOI PubMed
91. Guo R, Wang X, Chang H, et al. Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare
electronics. Adv Eng Mater 2018;20:1800054. DOI
92. Dong C, Leber A, Das Gupta T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun
2020;11:3537. DOI PubMed PMC
93. Zhang X, Ai J, Zou R, Su B. Compressible and stretchable magnetoelectric sensors based on liquid metals for highly sensitive, self-
powered respiratory monitoring. ACS Appl Mater Interfaces 2021;13:15727-37. DOI
94. Feng B, Jiang X, Zou G, et al. Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking
strategy. Adv Funct Mater 2021;31:2102359. DOI
95. Mengüç Y, Park Y, Pei H, et al. Wearable soft sensing suit for human gait measurement. Int J Rob Res 2014;33:1748-64. DOI
96. Do TN, Phan H, Nguyen T, Visell Y. Miniature soft electromagnetic actuators for robotic applications. Adv Funct Mater
2018;28:1800244. DOI
97. Xu C, Ma B, Yuan S, Zhao C, Liu H. High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing
electronics. Adv Electron Mater 2020;6:1900721. DOI
98. Wissman JP, Sampath K, Freeman SE, Rohde CA. Capacitive bio-inspired flow sensing cupula. Sensors 2019;19:2639. DOI
PubMed PMC
99. Zhang L, Gao M, Wang R, Deng Z, Gui L. Stretchable pressure sensor with leakage-free liquid-metal electrodes. Sensors
2019;19:1316. DOI PubMed PMC
100. Won D, Baek S, Kim H, Kim J. Arrayed-type touch sensor using micro liquid metal droplets with large dynamic range and high
sensitivity. Sens Actuator A Phys 2015;235:151-7. DOI
101. Won D, Baek S, Huh M, Kim H, Lee S, Kim J. Robust capacitive touch sensor using liquid metal droplets with large dynamic range.
Sensor Actuat A Phys 2017;259:105-11. DOI
102. Yeo JC, Kenry, Yu J, Loh KP, Wang Z, Lim CT. Triple-state liquid-based microfluidic tactile sensor with high flexibility, durability,
and sensitivity. ACS Sens 2016;1:543-51. DOI
103. Kim K, Choi J, Jeong Y, et al. Wearable sensors: highly sensitive and wearable liquid metal-based pressure sensor for health
monitoring applications: integration of a 3D-printed microbump array with the microchannel. Adv Healthc Mater 2019;8:1900986.
DOI
104. Yeo JC, Yu J, Koh ZM, Wang Z, Lim CT. Wearable tactile sensor based on flexible microfluidics. Lab Chip 2016;16:3244-50. DOI
PubMed
105. Jeong YR, Kim J, Xie Z, et al. A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion
monitoring with multi-site sensing capabilities. NPG Asia Mater 2017;9:e443. DOI
106. Park Y, Majidi C, Kramer R, Bérard P, Wood RJ. Hyperelastic pressure sensing with a liquid-embedded elastomer. J Micromech
Microeng 2010;20:125029. DOI
107. Zhang M, Wang X, Huang Z, Rao W. Liquid metal based flexible and implantable biosensors. Biosensors 2020;10:170. DOI
PubMed PMC
108. Tepáyotl-ramírez D, Lu T, Park Y, Majidi C. Collapse of triangular channels in a soft elastomer. Appl Phys Lett 2013;102:044102.
DOI
109. Nan K, Babaee S, Chan WW, et al. Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a
quipu. Nat Biomed Eng 2022;6:1092-104. DOI PubMed
110. Zhu M, Wang Y, Lou M, Yu J, Li Z, Ding B. Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing.
Nano Energy 2021;81:105669. DOI
111. Lin X, Mao Y, Li P, et al. Ultra-conformable ionic skin with multi-modal sensing, broad-spectrum antimicrobial and regenerative
capabilities for smart and expedited wound care. Adv Sci 2021;8:2004627. DOI PubMed PMC
112. Jiang C, Gao K, Zhao N, et al. A wearable braille recognition system based on high density tactile sensors. In: 2020 IEEE 33rd
International Conference on Micro Electro Mechanical Systems (MEMS); 2020 Jan 18-22; Vancouver, Canada; IEEE; 2020. p. 28-
31. DOI
113. Leber A, Dong C, Chandran R, Das Gupta T, Bartolomei N, Sorin F. Soft and stretchable liquid metal transmission lines as
distributed probes of multimodal deformations. Nat Electron 2020;3:316-26. DOI
114. Kim S, Oh J, Jeong D, Park W, Bae J. Consistent and reproducible direct ink writing of eutectic gallium-indium for high-quality soft
sensors. Soft Robot 2018;5:601-12. DOI
115. Wu Y, Zhen R, Liu H, et al. Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. J Mater Chem C
2017;5:12483-91. DOI
116. Lu T, Wissman J, Ruthika, Majidi C. Soft anisotropic conductors as electric vias for Ga-based liquid metal circuits. ACS Appl Mater
Interfaces 2015;7:26923-9. DOI PubMed
117. So J, Thelen J, Qusba A, Hayes GJ, Lazzi G, Dickey MD. Reversibly deformable and mechanically tunable fluidic antennas. Adv

