Page 57 - Read Online
P. 57
Page 34 of 34 Ma et al. Soft Sci 2024;4:26 https://dx.doi.org/10.20517/ss.2024.20
96. Liu S, Chen R, Chen R, et al. Facile and cost-effective fabrication of highly sensitive, fast-response flexible humidity sensors enabled
by laser-induced graphene. ACS Appl Mater Interfaces 2023;15:57327-37. DOI PubMed
97. Xu K, Fujita Y, Lu Y, et al. A wearable body condition sensor system with wireless feedback alarm functions. Adv Mater
2021;33:e2008701. DOI
98. Babatain W, Buttner U, El-Atab N, Hussain MM. Graphene and liquid metal integrated multifunctional wearable platform for
monitoring motion and human-machine interfacing. ACS Nano 2022;16:20305-17. DOI PubMed
99. Moin A, Zhou A, Rahimi A, et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture
recognition. Nat Electron 2021;4:54-63. DOI
100. Yang H, Li J, Lim KZ, et al. Automatic strain sensor design via active learning and data augmentation for soft machines. Nat Mach
Intell 2022;4:84-94. DOI
101. Lu Y, Kong D, Yang G, et al. Machine learning-enabled tactile sensor design for dynamic touch decoding. Adv Sci
2023;10:e2303949. DOI PubMed PMC
102. Xie J, Zhao Y, Zhu D, et al. A machine learning-combined flexible sensor for tactile detection and voice recognition. ACS Appl Mater
Interfaces 2023;15:12551-9. DOI PubMed
103. Zhao P, Zhang Y, Liu Y, Huo D, Hou J, Hou C. Wearable electrochemical patch based on iron nano-catalysts incorporated laser-
induced graphene for sweat metabolites detection. Biosens Bioelectron 2024;249:116012. DOI PubMed
104. Ricciardolo FL, Sorbello V, Ciprandi G. FeNO as biomarker for asthma phenotyping and management. Allergy Asthma Proc
2015;36:e1-8. DOI PubMed
105. Antus B, Barta I, Horvath I, Csiszer E. Relationship between exhaled nitric oxide and treatment response in COPD patients with
exacerbations. Respirology 2010;15:472-7. DOI PubMed
106. Malerba M, Radaeli A, Olivini A, et al. Exhaled nitric oxide as a biomarker in COPD and related comorbidities. Biomed Res Int
2014;2014:271918. DOI PubMed PMC
107. Wang H, Xiang Z, Zhao P, et al. Double-sided wearable multifunctional sensing system with anti-interference design for human-
ambience interface. ACS Nano 2022;16:14679-92. DOI PubMed
108. Sun H, Gao X, Guo L, et al. Graphene-based dual-function acoustic transducers for machine learning-assisted human–robot
interfaces. InfoMat 2023;5:e12385. DOI
109. Song W, Wang H, Liu G, Peng M, Zou D. Improving the photovoltaic performance and flexibility of fiber-shaped dye-sensitized
solar cells with atomic layer deposition. Nano Energy 2016;19:1-7. DOI
110. Pu X, Song W, Liu M, et al. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-
sensitized solar cells. Adv Energy Mater 2016;6:1601048. DOI
111. Jung S, Lee J, Hyeon T, Lee M, Kim DH. Fabric-based integrated energy devices for wearable activity monitors. Adv Mater
2014;26:6329-34. DOI PubMed
112. Lee JW, Xu R, Lee S, et al. Soft, thin skin-mounted power management systems and their use in wireless thermography. Proc Natl
Acad Sci U S A 2016;113:6131-6. DOI PubMed PMC
113. Liu C, Neale ZG, Cao G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today
2016;19:109-23. DOI
114. Cong HP, Chen JF, Yu SH. Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem Soc Rev
2014;43:7295-325. DOI PubMed
115. Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W. Nanostructured materials for advanced energy conversion and
storage devices. Nat Mater 2005;4:366-77. DOI PubMed
116. Pu X, Liu M, Li L, et al. Wearable textile-based in-plane microsupercapacitors. Adv Energy Mater 2016;6:1601254. DOI
117. Wang J, Li X, Zi Y, et al. A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics.
Adv Mater 2015;27:4830-6. DOI PubMed
118. Wang H, Yang Y, Guo L. Nature-inspired electrochemical energy-storage materials and devices. Adv Energy Mater 2017;7:1601709.
DOI
119. Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L. Intricate hollow structures: controlled synthesis and applications in energy
storage and conversion. Adv Mater 2017;29:1602914. DOI PubMed
120. Yu Y, Nassar J, Xu C, et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine
interfaces. Sci Robot 2020;5:eaaz7946. DOI PubMed PMC
121. Chen J, Wang ZL. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule
2017;1:480-521. DOI
122. Stanford MG, Li JT, Chyan Y, Wang Z, Wang W, Tour JM. Laser-induced graphene triboelectric nanogenerators. ACS Nano
2019;13:7166-74. DOI PubMed
123. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 2012;41:797-828.
DOI PubMed
124. Zhao G, Park W, Huang X, et al. Soft, sweat-powered health status sensing and visualization system enabled by laser-fabrication. Adv
Sensor Res 2023;2:2300070. DOI
125. Yang R, Zhang W, Tiwari N, Yan H, Li T, Cheng H. Multimodal sensors with decoupled sensing mechanisms. Adv Sci
2022;9:e2202470. DOI PubMed PMC

