Page 56 - Read Online
P. 56

Ma et al. Soft Sci 2024;4:26  https://dx.doi.org/10.20517/ss.2024.20             Page 33 of 34

                    batteries. Adv Energy Mater 2019;9:1901796.  DOI
               66.       Stanford MG, Zhang C, Fowlkes JD, et al. High-resolution laser-induced graphene. Flexible electronics beyond the visible limit. ACS
                    Appl Mater Interfaces 2020;12:10902-7.  DOI  PubMed
               67.       Duy LX, Peng Z, Li Y, Zhang J, Ji Y, Tour JM. Laser-induced graphene fibers. Carbon 2018;126:472-9.  DOI
               68.       Rahimi R, Ochoa M, Yu W, Ziaie B. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl
                    Mater Interfaces 2015;7:4463-70.  DOI  PubMed
               69.       Zang X, Shen C, Chu Y, et al. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics. Adv Mater
                    2018;30:e1800062.  DOI  PubMed
               70.       Yang L, Liu C, Yuan W, et al. Fully stretchable, porous MXene-graphene foam nanocomposites for energy harvesting and self-
                    powered sensing. Nano Energy 2022;103:107807.  DOI
               71.       Huang X, Li H, Li J, et al. Transient, implantable, ultrathin biofuel cells enabled by laser-induced graphene and gold nanoparticles
                    composite. Nano Lett 2022;22:3447-56.  DOI  PubMed
               72.       Sharma S, Pradhan GB, Jeong S, Zhang S, Song H, Park JY. Stretchable and all-directional strain-insensitive electronic glove for
                    robotic skins and human-machine interfacing. ACS Nano 2023;17:8355-66.  DOI  PubMed
               73.       Zhang C, Chen J, Gao J, et al. Laser processing of crumpled porous graphene/MXene nanocomposites for a standalone gas sensing
                    system. Nano Lett 2023;23:3435-43.  DOI  PubMed
               74.       Zhang S, Chhetry A, Zahed MA, et al. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj
                    Flex Electron 2022;6:11.  DOI
               75.       Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J. Sensitive, selective, disposable electrochemical dopamine sensor based
                    on PEDOT-modified laser scribed graphene. Biosens Bioelectron 2018;107:184-91.  DOI  PubMed
               76.       Heikenfeld J, Jajack A, Rogers J, et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip 2018;18:217-48.  DOI
                    PubMed  PMC
               77.       Kaidarova A, Khan MA, Marengo M, et al. Wearable multifunctional printed graphene sensors. npj Flex Electron 2019;3:15.  DOI
               78.       Xu K, Lu Y, Honda S, Arie T, Akita S, Takei K. Highly stable kirigami-structured stretchable strain sensors for perdurable wearable
                    electronics. J Mater Chem C 2019;7:9609-17.  DOI
               79.       Ling Y, Zhuang X, Xu Z, et al. Mechanically assembled, three-dimensional hierarchical structures of cellular graphene with
                    programmed geometries and outstanding electromechanical properties. ACS Nano 2018;12:12456-63.  DOI  PubMed
               80.       Zhu Y, Cai H, Ding H, Pan N, Wang X. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser
                    scribing polydimethylsiloxane. ACS Appl Mater Interfaces 2019;11:6195-200.  DOI  PubMed
               81.       Wang H, Zhao Z, Liu P, Guo X. A soft and stretchable electronics using laser-induced graphene on polyimide/PDMS composite
                    substrate. npj Flex Electron 2022;6:26.  DOI
               82.       Jeong SY, Lee JU, Hong SM, et al. Highly skin-conformal laser-induced graphene-based human motion monitoring sensor.
                    Nanomaterials 2021;11:951.  DOI  PubMed  PMC
               83.       Sun B, McCay RN, Goswami S, et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene
                    and sugar-templated elastomer sponges. Adv Mater 2018;30:e1804327.  DOI  PubMed
               84.       Sindhu B, Kothuru A, Sahatiya P, Goel S, Nandi S. Laser-induced graphene printed wearable flexible antenna-based strain sensor for
                    wireless human motion monitoring. IEEE Trans Electron Devices 2021;68:3189-94.  DOI
               85.       Luo S, Hoang PT, Liu T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive
                    sensor and sensor arrays. Carbon 2016;96:522-31.  DOI
               86.       Mehmood A, Mubarak NM, Khalid M, Jagadish P, Walvekar R, Abdullah EC. Graphene/PVA buckypaper for strain sensing
                    application. Sci Rep 2020;10:20106.  DOI  PubMed  PMC
               87.       Jeong SY, Ma YW, Lee JU, Je GJ, Shin BS. Flexible and highly sensitive strain sensor based on laser-induced graphene pattern
                    fabricated by 355 nm pulsed laser. Sensors 2019;19:4867.  DOI  PubMed  PMC
               88.       Wei S, Liu Y, Yang L, et al. Flexible large e-skin array based on patterned laser-induced graphene for tactile perception. Sensor
                    Actuat A Phys 2022;334:113308.  DOI
               89.       Yoon H, Lee K, Shin H, et al. In situ co-transformation of reduced graphene oxide embedded in laser-induced graphene and full-
                    range on-body strain sensor. Adv Funct Mater 2023;33:2300322.  DOI
               90.       Shao Q, Liu G, Teweldebrhan D, Balandin AA. High-temperature quenching of electrical resistance in graphene interconnects. Appl
                    Phys Lett 2008;92:202108.  DOI
               91.       Kulyk B, Silva BFR, Carvalho AF, et al. Laser-induced graphene from paper by ultraviolet irradiation: humidity and temperature
                    sensors. Adv Mater Technol 2022;7:2101311.  DOI
               92.       Tian Q, Yan W, Li Y, Ho D. Bean pod-inspired ultrasensitive and self-healing pressure sensor based on laser-induced graphene and
                    polystyrene microsphere sandwiched structure. ACS Appl Mater Interfaces 2020;12:9710-7.  DOI  PubMed
               93.       Li Y, Long J, Chen Y, Huang Y, Zhao N. Crosstalk-free, high-resolution pressure sensor arrays enabled by high-throughput laser
                    manufacturing. Adv Mater 2022;34:e2200517.  DOI  PubMed
               94.       Marengo M, Marinaro G, Kosel J. Flexible temperature and flow sensor from laser-induced graphene. In: 2017 IEEE SENSORS;
                    2017 Oct 29 - Nov 01; Glasgow, UK. IEEE; 2017. p. 1-3.  DOI
               95.       Wang J, Wang N, Xu D, Tang L, Sheng B. Flexible humidity sensors composed with electrodes of laser induced graphene and
                    sputtered sensitive films derived from poly(ether-ether-ketone). Sensor Actuat B Chem 2023;375:132846.  DOI
   51   52   53   54   55   56   57   58   59   60   61