Page 54 - Read Online
P. 54
Ma et al. Soft Sci 2024;4:26 https://dx.doi.org/10.20517/ss.2024.20 Page 31 of 34
mechanical constraints. Sci Adv 2020;6:eabb7043. DOI PubMed PMC
6. Zhuang M, Yin L, Wang Y, et al. Highly robust and wearable facial expression recognition via deep-learning-assisted, soft epidermal
electronics. Research 2021;2021:9759601. DOI PubMed PMC
7. Wong TH, Yiu CK, Zhou J, et al. Tattoo-like epidermal electronics as skin sensors for human machine interfaces. Soft Sci 2021;1:10.
DOI
8. Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron
2020;3:571-8. DOI
9. Fellmann N, Grizard G, Coudert J. Human frontal sweat rate and lactate concentration during heat exposure and exercise. J Appl
Physiol Respir Environ Exerc Physiol 1983;54:355-60. DOI PubMed
10. Wang B, Zhao C, Wang Z, et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci Adv
2022;8:eabk0967. DOI PubMed PMC
11. Lin J, Fu R, Zhong X, et al. Wearable sensors and devices for real-time cardiovascular disease monitoring. Cell Rep Phys Sci
2021;2:100541. DOI
12. Chen S, Qi J, Fan S, Qiao Z, Yeo JC, Lim CT. Flexible wearable sensors for cardiovascular health monitoring. Adv Healthc Mater
2021;10:e2100116. DOI PubMed
13. Wang C, Sani ES, Gao W. Wearable bioelectronics for chronic wound management. Adv Funct Mater 2022;32:2111022. DOI
PubMed PMC
14. Ma Y, Zhang Y, Cai S, et al. Flexible hybrid electronics for digital healthcare. Adv Mater 2020;32:e1902062. DOI PubMed
15. Gao W, Ota H, Kiriya D, Takei K, Javey A. Flexible electronics toward wearable sensing. Acc Chem Res 2019;52:523-33. DOI
PubMed
16. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices
for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765. DOI PubMed
17. Yang W, Li N, Zhao S, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv
Mater Technol 2018;3:1700241. DOI
18. Sinha AK, Goh GL, Yeong WY, Cai Y. Ultra-low-cost, crosstalk-free, fast-responding, wide-sensing-range tactile fingertip sensor for
smart gloves. Adv Mater Inter 2022;9:2200621. DOI
19. Cho C, Shin W, Kim M, et al. Monolithically programmed stretchable conductor by laser-induced entanglement of liquid metal and
metallic nanowire backbone. Small 2022;18:e2202841. DOI PubMed
20. Kim J, Won D, Kim TH, Kim CY, Ko SH. Rapid prototyping and facile customization of conductive hydrogel bioelectronics based
on all laser process. Biosens Bioelectron 2024;258:116327. DOI PubMed
21. You R, Liu YQ, Hao YL, Han DD, Zhang YL, You Z. Laser fabrication of graphene-based flexible electronics. Adv Mater
2020;32:e1901981. DOI PubMed
22. Dong Z, He Q, Shen D, et al. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications.
Microsyst Nanoeng 2023;9:31. DOI PubMed PMC
23. Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun 2014;5:5714. DOI
PubMed PMC
24. Burke M, Larrigy C, Vaughan E, et al. Fabrication and electrochemical properties of three-dimensional (3D) porous graphitic and
graphenelike electrodes obtained by low-cost direct laser writing methods. ACS Omega 2020;5:1540-8. DOI PubMed PMC
25. Ye R, Chyan Y, Zhang J, et al. Laser-induced graphene formation on wood. Adv Mater 2017;29:1702211. DOI PubMed
26. Wang M, Yang Y, Gao W. Laser-engraved graphene for flexible and wearable electronics. Trend Chem 2021;3:969-81. DOI
27. Lu Y, Yang G, Wang S, et al. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat Electron
2024;7:51-65. DOI
28. Yu H, Gai M, Liu L, Chen F, Bian J, Huang Y. Laser-induced direct graphene patterning: from formation mechanism to flexible
applications. Soft Sci 2023;3:4. DOI
29. Zhang S, Zhu J, Zhang Y, et al. Standalone stretchable RF systems based on asymmetric 3D microstrip antennas with on-body
wireless communication and energy harvesting. Nano Energy 2022;96:107069. DOI
30. Luong DX, Yang K, Yoon J, et al. Laser-induced graphene composites as multifunctional surfaces. ACS Nano 2019;13:2579-86.
DOI PubMed
31. Shi X, Zhou F, Peng J, Wu R, Wu Z, Bao X. One-step scalable fabrication of graphene-integrated micro-supercapacitors with
remarkable flexibility and exceptional performance uniformity. Adv Funct Mater 2019;29:1902860. DOI
32. Wang H, Li X, Wang X, Qin Y, Pan Y, Guo X. Somatosensory electro-thermal actuator through the laser-induced graphene
technology. Small 2024;20:e2310612. DOI PubMed
33. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst
Rev 2021;10:89. DOI PubMed PMC
34. Dallinger A, Keller K, Fitzek H, Greco F. Stretchable and skin-conformable conductors based on polyurethane/laser-induced
graphene. ACS Appl Mater Interfaces 2020;12:19855-65. DOI PubMed PMC
35. Gandla S, Naqi M, Lee M, et al. Highly linear and stable flexible temperature sensors based on laser-induced carbonization of
polyimide substrates for personal mobile monitoring. Adv Mater Technol 2020;5:2000014. DOI
36. Luong DX, Subramanian AK, Silva GAL, et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv

