Page 54 - Read Online
P. 54

Ma et al. Soft Sci 2024;4:26  https://dx.doi.org/10.20517/ss.2024.20             Page 31 of 34

                    mechanical constraints. Sci Adv 2020;6:eabb7043.  DOI  PubMed  PMC
               6.       Zhuang M, Yin L, Wang Y, et al. Highly robust and wearable facial expression recognition via deep-learning-assisted, soft epidermal
                    electronics. Research 2021;2021:9759601.  DOI  PubMed  PMC
               7.       Wong TH, Yiu CK, Zhou J, et al. Tattoo-like epidermal electronics as skin sensors for human machine interfaces. Soft Sci 2021;1:10.
                    DOI
               8.       Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron
                    2020;3:571-8.  DOI
               9.       Fellmann N, Grizard G, Coudert J. Human frontal sweat rate and lactate concentration during heat exposure and exercise. J Appl
                    Physiol Respir Environ Exerc Physiol 1983;54:355-60.  DOI  PubMed
               10.       Wang B, Zhao C, Wang Z, et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci Adv
                    2022;8:eabk0967.  DOI  PubMed  PMC
               11.       Lin J, Fu R, Zhong X, et al. Wearable sensors and devices for real-time cardiovascular disease monitoring. Cell Rep Phys Sci
                    2021;2:100541.  DOI
               12.       Chen S, Qi J, Fan S, Qiao Z, Yeo JC, Lim CT. Flexible wearable sensors for cardiovascular health monitoring. Adv Healthc Mater
                    2021;10:e2100116.  DOI  PubMed
               13.       Wang C, Sani ES, Gao W. Wearable bioelectronics for chronic wound management. Adv Funct Mater 2022;32:2111022.  DOI
                    PubMed  PMC
               14.       Ma Y, Zhang Y, Cai S, et al. Flexible hybrid electronics for digital healthcare. Adv Mater 2020;32:e1902062.  DOI  PubMed
               15.       Gao W, Ota H, Kiriya D, Takei K, Javey A. Flexible electronics toward wearable sensing. Acc Chem Res 2019;52:523-33.  DOI
                    PubMed
               16.       Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices
                    for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765.  DOI  PubMed
               17.       Yang W, Li N, Zhao S, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv
                    Mater Technol 2018;3:1700241.  DOI
               18.       Sinha AK, Goh GL, Yeong WY, Cai Y. Ultra-low-cost, crosstalk-free, fast-responding, wide-sensing-range tactile fingertip sensor for
                    smart gloves. Adv Mater Inter 2022;9:2200621.  DOI
               19.       Cho C, Shin W, Kim M, et al. Monolithically programmed stretchable conductor by laser-induced entanglement of liquid metal and
                    metallic nanowire backbone. Small 2022;18:e2202841.  DOI  PubMed
               20.       Kim J, Won D, Kim TH, Kim CY, Ko SH. Rapid prototyping and facile customization of conductive hydrogel bioelectronics based
                    on all laser process. Biosens Bioelectron 2024;258:116327.  DOI  PubMed
               21.       You R, Liu YQ, Hao YL, Han DD, Zhang YL, You Z. Laser fabrication of graphene-based flexible electronics. Adv Mater
                    2020;32:e1901981.  DOI  PubMed
               22.       Dong Z, He Q, Shen D, et al. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications.
                    Microsyst Nanoeng 2023;9:31.  DOI  PubMed  PMC
               23.       Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun 2014;5:5714.  DOI
                    PubMed  PMC
               24.       Burke M, Larrigy C, Vaughan E, et al. Fabrication and electrochemical properties of three-dimensional (3D) porous graphitic and
                    graphenelike electrodes obtained by low-cost direct laser writing methods. ACS Omega 2020;5:1540-8.  DOI  PubMed  PMC
               25.       Ye R, Chyan Y, Zhang J, et al. Laser-induced graphene formation on wood. Adv Mater 2017;29:1702211.  DOI  PubMed
               26.       Wang M, Yang Y, Gao W. Laser-engraved graphene for flexible and wearable electronics. Trend Chem 2021;3:969-81.  DOI
               27.       Lu Y, Yang G, Wang S, et al. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat Electron
                    2024;7:51-65.  DOI
               28.       Yu H, Gai M, Liu L, Chen F, Bian J, Huang Y. Laser-induced direct graphene patterning: from formation mechanism to flexible
                    applications. Soft Sci 2023;3:4.  DOI
               29.       Zhang S, Zhu J, Zhang Y, et al. Standalone stretchable RF systems based on asymmetric 3D microstrip antennas with on-body
                    wireless communication and energy harvesting. Nano Energy 2022;96:107069.  DOI
               30.       Luong DX, Yang K, Yoon J, et al. Laser-induced graphene composites as multifunctional surfaces. ACS Nano 2019;13:2579-86.
                    DOI  PubMed
               31.       Shi X, Zhou F, Peng J, Wu R, Wu Z, Bao X. One-step scalable fabrication of graphene-integrated micro-supercapacitors with
                    remarkable flexibility and exceptional performance uniformity. Adv Funct Mater 2019;29:1902860.  DOI
               32.       Wang H, Li X, Wang X, Qin Y, Pan Y, Guo X. Somatosensory electro-thermal actuator through the laser-induced graphene
                    technology. Small 2024;20:e2310612.  DOI  PubMed
               33.       Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst
                    Rev 2021;10:89.  DOI  PubMed  PMC
               34.       Dallinger A, Keller K, Fitzek H, Greco F. Stretchable and skin-conformable conductors based on polyurethane/laser-induced
                    graphene. ACS Appl Mater Interfaces 2020;12:19855-65.  DOI  PubMed  PMC
               35.       Gandla S, Naqi M, Lee M, et al. Highly linear and stable flexible temperature sensors based on laser-induced carbonization of
                    polyimide substrates for personal mobile monitoring. Adv Mater Technol 2020;5:2000014.  DOI
               36.       Luong DX, Subramanian AK, Silva GAL, et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv
   49   50   51   52   53   54   55   56   57   58   59