Page 32 - Read Online
P. 32

Page 16 of 16                           Hong et al. Soft Sci 2023;3:29  https://dx.doi.org/10.20517/ss.2023.20

               78.      Xu S, Li M, Dai Y, et al. Realizing a 10 ℃ cooling effect in a flexible thermoelectric cooler using a vortex generator. Adv Mater
                   2022;34:e2204508.  DOI  PubMed
               79.      Du Y, Xu J, Paul B, Eklund P. Flexible thermoelectric materials and devices. Appl Mater Today 2018;12:366-88.  DOI
               80.      Liu Y, Zhu H, Xing L, Bu Q, Ren D, Sun B. Recent advances in inkjet-printing technologies for flexible/wearable electronics.
                   Nanoscale 2023;15:6025-51.  DOI
               81.      Liang J, Wang T, Qiu P, et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ Sci
                   2019;12:2983-90.  DOI
               82.      Tan M, Liu W, Shi X, Sun Q, Chen Z. Minimization of the electrical contact resistance in thin-film thermoelectric device. Appl Phys
                   Rev 2023;10:021404.  DOI
               83.      Du J, Zhang B, Jiang M, et al. Inkjet printing flexible thermoelectric devices using metal chalcogenide nanowires. Adv Funct Mater
                   2023;33:2213564.  DOI
               84.      Juntunen T, Jussila H, Ruoho M, et al. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv Funct Mater
                   2018;28:1800480.  DOI
               85.      Hu Q, Liu W, Zhang L, et al. SWCNTs/Ag 2 Se film with superior bending resistance and enhanced thermoelectric performance via in
                   situ compositing. J Chem Eng 2023;457:141024.  DOI
               86.      Wu H, Shi X, Duan J, Liu Q, Chen Z. Advances in Ag Se-based thermoelectrics from materials to applications. Energy Environ Sci
                                                       2
                   2023;16:1870-906.  DOI
               87.      Zhang L, Xia B, Shi X, et al. Achieving high thermoelectric properties in PEDOT:PSS/SWCNTs composite films by a combination of
                   dimethyl sulfoxide doping and NaBH4 dedoping. Carbon 2022;196:718-26.  DOI
               88.      Saeidi-javash M, Kuang W, Dun C, Zhang Y. 3D conformal printing and photonic sintering of high-performance flexible
                   thermoelectric films using 2D nanoplates. Adv Funct Mater 2019;29:1901930.  DOI
               89.      Kee S, Haque MA, Corzo D, Alshareef HN, Baran D. Self-healing and stretchable 3D-printed organic thermoelectrics. Adv Funct
                   Mater 2019;29:1905426.  DOI
               90.      Jang E, Banerjee P, Huang J, Madan D. High performance scalable and cost-effective thermoelectric devices fabricated using energy
                   efficient methods and naturally occuring materials. Appl Energy 2021;294:117006.  DOI
               91.     Zhang Z, Qiu J, Wang S. Roll-to-roll printing of flexible thin-film organic thermoelectric devices. Manuf Lett 2016;8:6-10.  DOI
               92.      Søndergaard RR, Hösel M, Espinosa N, Jørgensen M, Krebs FC. Practical evaluation of organic polymer thermoelectrics by
                   large-area R2R processing on flexible substrates. Energy Sci Eng 2013;1:81-8.  DOI
               93.      Stuart BW, Morgan K, Tao X, et al. Linear electron beam assisted roll-to-roll in-vacuum flexographic patterning for flexible
                   thermoelectric generators. Coatings 2021;11:1470.  DOI
               94.      Hwang S, Jeong I, Park J, et al. Enhanced output performance of all-solution-processed organic thermoelectrics: spray printing and
                   interface engineering. ACS Appl Mater Interfaces 2020;12:26250-7.  DOI
   27   28   29   30   31   32   33   34   35   36   37