Page 30 - Read Online
P. 30
Page 14 of 16 Hong et al. Soft Sci 2023;3:29 https://dx.doi.org/10.20517/ss.2023.20
13. He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997. DOI
PubMed
14. Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics.
Nature 2011;473:66-9. DOI
15. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater 2008;7:105-14. DOI PubMed
16. Beretta D, Neophytou N, Hodges JM, et al. Thermoelectrics: from history, a window to the future. Mater Sci Eng R Rep
2019;138:100501. DOI
17. Cao T, Shi X, Chen Z. Advances in the design and assembly of flexible thermoelectric device. Prog Mater Sci 2023;131:101003. DOI
18. Chen W, Shi X, Zou J, Chen Z. Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater
Sci Eng R Rep 2022;151:100700. DOI
19. Hong M, Chen ZG, Yang L, Zou J. Bi Sb Te nanoplates with enhanced thermoelectric performance due to sufficiently decoupled
x 2-x 3
electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy 2016;20:144-55. DOI
20. Hong M, Wang Y, Xu S, et al. Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe Se with refined
1-x
x
band structures. Nano Energy 2019;60:1-7. DOI
21. Hong M, Zou J, Chen ZG. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Adv Mater
2019;31:e1807071. DOI PubMed
22. Hong M, Wang Y, Liu W, et al. Arrays of planar vacancies in superior thermoelectric Ge x yCdxBiyTe with band convergence. Adv
1− −
Energy Mater 2018;8:1801837. DOI
23. Yu Y, Zhou C, Zhang S, et al. Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography.
Mater Today 2020;32:260-74. DOI
24. Kim W. Strategies for engineering phonon transport in thermoelectrics. J Mater Chem C 2015;3:10336-48. DOI
25. Han C, Sun Q, Li Z, Dou SX. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv Energy Mater
2016;6:1600498. DOI
26. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008;321:1457-61. DOI
PubMed
27. Chen Z, Zhang X, Pei Y. Manipulation of Phonon transport in thermoelectrics. Adv Mater 2018;30:e1705617. DOI
28. Wu Y, Chen Z, Nan P, et al. Lattice strain advances thermoelectrics. Joule 2019;3:1276-88. DOI
29. Kato K, Kuriyama K, Yabuki T, Miyazaki K. Organic-inorganic thermoelectric material for a printed generator. J Phys Conf Ser
2018;1052:012008. DOI
30. Daniels LM, Savvin SN, Pitcher MJ, et al. Phonon-glass electron-crystal behaviour by a site disorder in n-type thermoelectric oxides.
Energy Environ Sci 2017;10:1917-22. DOI
31. Zeier WG, Zevalkink A, Gibbs ZM, Hautier G, Kanatzidis MG, Snyder GJ. Thinking like a chemist: intuition in thermoelectric
materials. Angew Chem Int Ed Engl 2016;55:6826-41. DOI
32. Wang L, Zhang Y, Zeng Z, et al. Tracking the sliding of grain boundaries at the atomic scale. Science 2022;375:1261-5. DOI
33. Hong M, Li M, Wang Y, Shi XL, Chen ZG. Advances in versatile GeTe thermoelectrics from materials to devices. Adv Mater
2023;35:e2208272. DOI
34. Hong M, Chen ZG. Chemistry in advancing thermoelectric GeTe materials. Acc Chem Res 2022;55:3178-90. DOI
35. Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V VI thermoelectric materials. Adv Sci 2016;3:1600004. DOI
2 3
PubMed PMC
36. Hong M, Zou J, Chen Z. 4 - Synthesis of thermoelectric materials. In: Ranjan Kumar, Ranber Singh, editors. Thermoelectricity and
advanced thermoelectric materials. Woodhead Publishing; 2021. p. 73-103. DOI
37. Liu W, Chen Z, Zou J. Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges. Adv Energy
Mater 2018;8:1800056. DOI
38. Miyazaki K, Kuriyama K, Yabuki T. Printable thermoelectric device. J Phys Conf Ser 2019;1407:012057. DOI
39. Chen WC, Wu YC, Hwang WS, Hsieh HL, Huang JY, Huang TK. A numerical study of zone-melting process for the thermoelectric
material of Bi Te . IOP Conf Ser Mater Sci Eng 2015;84:012094. DOI
2 3
40. Müller G, Rudolph P. Crystal growth from the melt. In: K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard
Ilschner, Edward J. Kramer, Subhash Mahajan, Patrick Veyssière, editors. Encyclopedia of materials: science and technology.
Elsevier; 2001. p. 1866-72. DOI
41. Chen Z, Jian Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater
2017;29:1606768. DOI
42. Chen Z, Ge B, Li W, et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat Commun
2017;8:13828. DOI PubMed PMC
43. Li L, Xu S, Li G. Epitaxial growth and thermoelectric measurement of Bi Te /Sb superlattice nanowires. Chin J Chem Phys
2 3
2016;29:365-8. DOI
44. Kumar P, Pfeffer M, Peranio N, et al. Ternary, single-crystalline Bi (Te,Se) nanowires grown by electrodeposition. Acta Mater
3
2
2017;125:238-45. DOI
45. Lee J, Kim J, Moon W, Berger A, Lee J. Enhanced seebeck coefficients of thermoelectric Bi Te nanowires as a result of an optimized
3
2
annealing process. J Phys Chem C 2012;116:19512-6. DOI

