Page 30 - Read Online
P. 30

Page 14 of 16                           Hong et al. Soft Sci 2023;3:29  https://dx.doi.org/10.20517/ss.2023.20

               13.      He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997.  DOI
                   PubMed
               14.      Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics.
                   Nature 2011;473:66-9.  DOI
               15.      Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater 2008;7:105-14.  DOI  PubMed
               16.      Beretta D, Neophytou N, Hodges JM, et al. Thermoelectrics: from history, a window to the future.  Mater Sci Eng R Rep
                   2019;138:100501.  DOI
               17.      Cao T, Shi X, Chen Z. Advances in the design and assembly of flexible thermoelectric device. Prog Mater Sci 2023;131:101003.  DOI
               18.      Chen W, Shi X, Zou J, Chen Z. Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater
                   Sci Eng R Rep 2022;151:100700.  DOI
               19.      Hong M, Chen ZG, Yang L, Zou J. Bi Sb Te  nanoplates with enhanced thermoelectric performance due to sufficiently decoupled
                                            x  2-x  3
                   electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy 2016;20:144-55.  DOI
               20.      Hong M, Wang Y, Xu S, et al. Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe Se  with refined
                                                                                              1-x
                                                                                                 x
                   band structures. Nano Energy 2019;60:1-7.  DOI
               21.      Hong M, Zou J, Chen ZG. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Adv Mater
                   2019;31:e1807071.  DOI  PubMed
               22.      Hong M, Wang Y, Liu W, et al. Arrays of planar vacancies in superior thermoelectric Ge x yCdxBiyTe with band convergence. Adv
                                                                             1− −
                   Energy Mater 2018;8:1801837.  DOI
               23.      Yu Y, Zhou C, Zhang S, et al. Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography.
                   Mater Today 2020;32:260-74.  DOI
               24.      Kim W. Strategies for engineering phonon transport in thermoelectrics. J Mater Chem C 2015;3:10336-48.  DOI
               25.      Han C, Sun Q, Li Z, Dou SX. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv Energy Mater
                   2016;6:1600498.  DOI
               26.      Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008;321:1457-61.  DOI
                   PubMed
               27.      Chen Z, Zhang X, Pei Y. Manipulation of Phonon transport in thermoelectrics. Adv Mater 2018;30:e1705617.  DOI
               28.      Wu Y, Chen Z, Nan P, et al. Lattice strain advances thermoelectrics. Joule 2019;3:1276-88.  DOI
               29.      Kato K, Kuriyama K, Yabuki T, Miyazaki K. Organic-inorganic thermoelectric material for a printed generator. J Phys Conf Ser
                   2018;1052:012008.  DOI
               30.      Daniels LM, Savvin SN, Pitcher MJ, et al. Phonon-glass electron-crystal behaviour by a site disorder in n-type thermoelectric oxides.
                   Energy Environ Sci 2017;10:1917-22.  DOI
               31.      Zeier WG, Zevalkink A, Gibbs ZM, Hautier G, Kanatzidis MG, Snyder GJ. Thinking like a chemist: intuition in thermoelectric
                   materials. Angew Chem Int Ed Engl 2016;55:6826-41.  DOI
               32.      Wang L, Zhang Y, Zeng Z, et al. Tracking the sliding of grain boundaries at the atomic scale. Science 2022;375:1261-5.  DOI
               33.      Hong M, Li M, Wang Y, Shi XL, Chen ZG. Advances in versatile GeTe thermoelectrics from materials to devices. Adv Mater
                   2023;35:e2208272.  DOI
               34.      Hong M, Chen ZG. Chemistry in advancing thermoelectric GeTe materials. Acc Chem Res 2022;55:3178-90.  DOI
               35.      Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V VI  thermoelectric materials. Adv Sci 2016;3:1600004.  DOI
                                                                  2  3
                   PubMed  PMC
               36.      Hong M, Zou J, Chen Z. 4 - Synthesis of thermoelectric materials. In: Ranjan Kumar, Ranber Singh, editors. Thermoelectricity and
                   advanced thermoelectric materials. Woodhead Publishing; 2021. p. 73-103.  DOI
               37.      Liu W, Chen Z, Zou J. Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges. Adv Energy
                   Mater 2018;8:1800056.  DOI
               38.      Miyazaki K, Kuriyama K, Yabuki T. Printable thermoelectric device. J Phys Conf Ser 2019;1407:012057.  DOI
               39.      Chen WC, Wu YC, Hwang WS, Hsieh HL, Huang JY, Huang TK. A numerical study of zone-melting process for the thermoelectric
                   material of Bi Te . IOP Conf Ser Mater Sci Eng 2015;84:012094.  DOI
                            2  3
               40.      Müller G, Rudolph P. Crystal growth from the melt. In: K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard
                   Ilschner, Edward J. Kramer, Subhash Mahajan, Patrick Veyssière, editors. Encyclopedia of materials: science and technology.
                   Elsevier; 2001. p. 1866-72.  DOI
               41.      Chen Z, Jian Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater
                   2017;29:1606768.  DOI
               42.      Chen Z, Ge B, Li W, et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat Commun
                   2017;8:13828.  DOI  PubMed  PMC
               43.      Li L, Xu S, Li G. Epitaxial growth and thermoelectric measurement of Bi Te /Sb superlattice nanowires. Chin J Chem Phys
                                                                       2  3
                   2016;29:365-8.  DOI
               44.      Kumar P, Pfeffer M, Peranio N, et al. Ternary, single-crystalline Bi (Te,Se)  nanowires grown by electrodeposition. Acta Mater
                                                                      3
                                                                 2
                   2017;125:238-45.  DOI
               45.      Lee J, Kim J, Moon W, Berger A, Lee J. Enhanced seebeck coefficients of thermoelectric Bi Te  nanowires as a result of an optimized
                                                                                 3
                                                                               2
                   annealing process. J Phys Chem C 2012;116:19512-6.  DOI
   25   26   27   28   29   30   31   32   33   34   35