Page 63 - Read Online
P. 63

Yue et al. Soft Sci 2023;3:13  https://dx.doi.org/10.20517/ss.2023.02            Page 11 of 11

                   laser-induced graphene/electrodeposited ZnO composites. Sci Rep 2021;11:17154.  DOI
               39.      Carvalho AF, Kulyk B, Fernandes AJS, Fortunato E, Costa FM. A review on the applications of graphene in mechanical transduction.
                   Adv Mater 2022;34:e2101326.  DOI
               40.      Romero FJ, Salinas-Castillo A, Rivadeneyra A, et al. In-depth study of laser diode ablation of kapton polyimide for flexible conductive
                   substrates. Nanomaterials 2018;8:517.  DOI  PubMed  PMC
               41.      Ehsani H, Boyd JD, Wang J, Grady ME. Evolution of the laser-induced spallation technique in film adhesion measurement. Appl Mech
                   Rev 2021;73:030802.  DOI  PubMed  PMC
               42.      Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun 2014;5:5714.  DOI
                   PubMed  PMC
               43.      Rodriguez RD, Shchadenko S, Murastov G, et al. Ultra-robust flexible electronics by laser-driven polymer-nanomaterials integration.
                   Adv Funct Mater 2021;31:2008818.  DOI
               44.      Cao L, Zhu S, Pan B, et al. Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 2020;163:85-
                   94.  DOI
               45.      Wang H, Wang H, Wang Y, et al. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano
                   2020;14:3219-26.  DOI
               46.      Li Z, Lu L, Xie Y, et al. Preparation of laser-induced graphene fabric from silk and its application examples for flexible sensor. Adv
                   Eng Mater 2021;23:2100195.  DOI
               47.      Kulyk B, Matos M, Silva BF, et al. Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors.
                   Diam Relat Mater 2022;123:108855.  DOI
               48.      Mendes LF, Pradela-filho LA, Paixão TR. Polyimide adhesive tapes as a versatile and disposable substrate to produce CO  laser-
                                                                                                     2
                   induced carbon sensors for batch and microfluidic analysis. Microchem J 2022;182:107893.  DOI
               49.      Getachew BA, Bergsman DS, Grossman JC. Laser-induced graphene from polyimide and polyethersulfone precursors as a sensing
                   electrode in anodic stripping voltammetry. ACS Appl Mater Interf 2020;12:48511-7.  DOI
               50.      Martins L, Kulyk B, Theodosiou A, et al. Laser-induced graphene from commercial polyimide coated optical fibers for sensor
                   development. Opt Laser Technol 2023;160:109047.  DOI
               51.      Kulyk B, Silva BFR, Carvalho AF, et al. Laser-induced graphene from paper for mechanical sensing. ACS Appl Mater Interf
                   2021;13:10210-21.  DOI
               52.      Sun B, McCay RN, Goswami S, et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and
                   sugar-templated elastomer sponges. Adv Mater 2018;30:e1804327.  DOI
               53.      Dallinger A, Keller K, Fitzek H, Greco F. Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene.
                   ACS Appl Mater Interf 2020;12:19855-65.  DOI  PubMed  PMC
               54.      Lu L, Lu D, Wu H, Wang W, Li L, Lv YM. Research and modeling of tire cornering characteristics considering temperature based on
                   UniTire model. P I Mech Eng D-J Aut 2022;236:497-511.  DOI
   58   59   60   61   62   63   64   65   66   67   68