Page 41 - Read Online
P. 41

Toscano et al. Neuroimmunol Neuroinflammation 2021;8:14-41  I  http://dx.doi.org/10.20517/2347-8659.2020.12  Page 37

                   soluble Fas ligand and potentiates epithelial cell apoptosis. Current Biology 1999;9:1441-7.
               137. Woo MS, Park JS, Choi IY, Kim WK, Kim HS. Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of
                   proinflammatory cytokines and iNOS in microglia. J Neurochem 2008;106:770-80.
               138. Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, et al. Dystroglycan is selectively cleaved at the parenchymal basement
                   membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 2006;203:1007-19.
               139. Nygårdas PT, Hinkkanen AE. Up-regulation of MMP-8 and MMP-9 activity in the BALB/c mouse spinal cord correlates with the severity
                   of experimental autoimmune encephalomyelitis. Clin Exp Immunol 2002;128:245-54.
               140. Buhler LA, Samara R, Guzman E, Wilson CL, Krizanac-Bengez L, et al. Matrix metalloproteinase-7 facilitates immune access to the
                   CNS in experimental autoimmune encephalomyelitis. BMC Neurosci 2009;10:17.
               141. Fainardi E, Castellazzi M, Tamborino C, Trentini A, Manfrinato MC, et al. Potential relevance of cerebrospinal fluid and serum levels and
                   intrathecal synthesis of active matrix metalloproteinase-2 (MMP-2) as markers of disease remission in patients with multiple sclerosis.
                   Mult Scler 2009;15:547-54.
               142. Trentini A, Castellazzi M, Cervellati C, Manfrinato MC, Tamborino C, et al. Interplay between Matrix Metalloproteinase-9, Matrix
                   Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients. Dis Markers 2016;2016:3672353.
               143. Liuzzi GM, Trojano M, Fanelli M, Avolio C, Fasano A, et al. Intrathecal synthesis of matrix metalloproteinase-9 in patients with multiple
                   sclerosis: implication for pathogenesis. Mult Scler 2002;8:222-8.
               144. Lee MA, Palace J, Stabler G, Ford J, Gearing A, et al. Serum gelatinase B, TIMP-1 and TIMP-2 levels in multiple sclerosis. A
                   longitudinal clinical and MRI study. Brain 1999;122:191-7.
               145. Lichtinghagen R, Seifert T, Kracke A, Marckmann S, Wurster U, et al. Expression of matrix metalloproteinase-9 and its inhibitors in
                   mononuclear blood cells of patients with multiple sclerosis. J Neuroimmunol 1999;99:19-26.
               146. Waubant E, Goodkin DE, Gee L, Bacchetti P, Sloan R, et al. Serum MMP-9 and TIMP-1 levels are related to MRI activity in relapsing
                   multiple sclerosis. Neurology 1999;53:1397-401.
               147. Fainardi E, Castellazzi M, Bellini T, Manfrinato MC, Baldi E, et al. Cerebrospinal fluid and serum levels and intrathecal production of
                   active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult Scler 2006;12:294-301.
               148. Leppert D, Ford J, Stabler G, Grygar C, Lienert C, et al. Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during
                   relapses and stable phases of multiple sclerosis. Brain 1998;121:2327-34.
               149. Benesová Y, Vasku A, Novotná H, Litzman J, Stourac P, et al. Matrix metalloproteinase-9 and matrix metalloproteinase-2 as biomarkers
                   of various courses in multiple sclerosis. Mult Scler 2009;15:316-22.
               150. Lindberg RL, De Groot CJ, Montagne L, Freitag P, van der Valk P, et al. The expression profile of matrix metalloproteinases (MMPs) and
                   their inhibitors (TIMPs) in lesions and normal appearing white matter of multiple sclerosis. Brain 2001;124:1743-53.
               151. Anthony DC, Ferguson B, Matyzak MK, Miller KM, Esiri MM, et al. Differential matrix metalloproteinase expression in cases of
                   multiple sclerosis and stroke. Neuropathol Appl Neurobiol 1997;23:406-15.
               152. Galboiz Y, Shapiro S, Lahat N, Rawashdeh H, Miller A. Matrix metalloproteinases and their tissue inhibitors as markers of disease
                   subtype and response to interferon-beta therapy in relapsing and secondary-progressive multiple sclerosis patients. Ann Neurol
                   2001;50:443-51.
               153. Bernal F, Elias B, Hartung HP, Kieseier BC. Regulation of matrix metalloproteinases and their inhibitors by interferon-beta: a longitudinal
                   study in multiple sclerosis patients. Mult Scler 2009;15:721-7.
               154. Comabella M, Río J, Espejo C, Ruiz de Villa M, Al-Zayat H, et al. Changes in matrix metalloproteinases and their inhibitors during
                   interferon-beta treatment in multiple sclerosis. Clin Immunol 2009;130:145-50.
               155. Balasa R, Bianca C, Septimiu V, Iunius S, Adina H, et al. The matrix metalloproteinases panel in multiple sclerosis patients treated with
                   Natalizumab: a possible answer to Natalizumab non-responders. CNS Neurol Disord Drug Targets 2018;17:464-72.
               156. Castellazzi M, Bellini T, Trentini A, Delbue S, Elia F, et al. Serum gelatinases levels in multiple sclerosis patients during 21 months of
                   Natalizumab therapy. Dis Markers 2016;2016:8434209.
               157. Fissolo N, Pignolet B, Matute-Blanch C, Triviño JC, Miró B, et al; Biomarkers and Response to Natalizumab for Multiple Sclerosis
                   Treatment (BIONAT), Best EScalation Treatment in Multiple Sclerosis (BEST-MS), and the Société Francophone de la Sclérose
                   En Plaques (SFSEP) Network. Matrix metalloproteinase 9 is decreased in natalizumab-treated multiple sclerosis patients at risk for
                   progressive multifocal leukoencephalopathy. Ann Neurol 2017;82:186-95.
               158. Cohen SR, Brooks BR, Herndon RM, McKhann GM. A diagnostic index of active demyelination: myelin basic protein in cerebrospinal
                   fluid. Ann Neurol 1980;8:25-31.
               159. Whitaker JN, Lisak RP, Bashir RM, Fitch OH, Seyer JM, et al. Immunoreactive myelin basic protein in the cerebrospinal fluid in
                   neurological disorders. Ann Neurol 1980;7:58-64.
               160. Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the central nervous system: structure, function, and pathology.
                   Physiol Rev 2019;99:1381-431.
               161. Whitaker JN. Myelin basic protein in cerebrospinal fluid and other body fluids. Mult Scler 1998;4:16-21.
               162. Meinl E, Hohlfeld R. Immunopathogenesis of multiple sclerosis: MBP and beyond. Clin Exp Immunol 2002;128:395-7.
               163. Olsson T, Sun J, Hillert J, Höjeberg B, Ekre HP, et al. Increased numbers of T cells recognizing multiple myelin basic protein epitopes in
                   multiple sclerosis. Eur J Immunol 1992;22:1083-7.
               164. Kim YC, Zhang AH, Yoon J, Culp WE, Lees JR, et al. Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through
                   IL-2-triggered inhibition of effector T cells. J Autoimmun 2018;92:77-86.
               165. Whitaker JN. Myelin encephalitogenic protein fragments in cerebrospinal fluid of persons with multiple sclerosis. Neurology
   36   37   38   39   40   41   42   43   44   45   46