Page 40 - Read Online
P. 40

Page 36  Toscano et al. Neuroimmunol Neuroinflammation 2021;8:14-41  I  http://dx.doi.org/10.20517/2347-8659.2020.12

               106. Wen SR, Liu GJ, Feng RN, Gong FC, Zhong H, et al. Increased levels of IL-23 and osteopontin in serum and cerebrospinal fluid of
                   multiple sclerosis patients. J Neuroimmunol 2012;244:94-6.
               107. Kivisäkk P, Healy BC, Francois K, Gandhi R, Gholipour T, et al. Evaluation of circulating osteopontin levels in an unselected cohort of
                   patients with multiple sclerosis: relevance for biomarker development. Mult Scler 2014;20:438-44.
               108. Braitch M, Nunan R, Niepel G, Edwards LJ, Constantinescu CS. Increased osteopontin levels in the cerebrospinal fluid of patients with
                   multiple sclerosis. Arch Neurol 2008;65:633-5.
               109. Vogt MH, ten Kate J, Drent RJ, Polman CH, Hupperts R. Increased osteopontin plasma levels in multiple sclerosis patients correlate with
                   bone-specific markers. Mult Scler 2010;16:443-9.
               110.  Börnsen L, Khademi M, Olsson T, Sørensen PS, Sellebjerg F. Osteopontin concentrations are increased in cerebrospinal fluid during
                   attacks of multiple sclerosis. Mult Scler 2011;17:32-42.
               111.  Szalardy L, Zadori D, Simu M, Bencsik K, Vecsei L, et al. Evaluating biomarkers of neuronal degeneration and neuroinflammation in
                   CSF of patients with multiple sclerosis-osteopontin as a potential marker of clinical severity. J Neurol Sci 2013;331:38-42.
               112.  Dianzani C, Vecchio D, Clemente N, Chiocchetti A, Martinelli Boneschi F, et al. Untangling extracellular proteasome-osteopontin circuit
                   dynamics in multiple sclerosis. Cells 2019;8:262.
               113.  Runia TF, van Meurs M, Nasserinejad K, Hintzen RQ. No evidence for an association of osteopontin plasma levels with disease activity
                   in multiple sclerosis. Mult Scler 2014;20:1670-1.
               114.  Zhao Q, Cheng W, Xi Y, Cao Z, Xu Y, et al. IFN-β regulates Th17 differentiation partly through the inhibition of osteopontin in
                   experimental autoimmune encephalomyelitis. Mol Immunol 2018;93:20-30.
               115.  Hong J, Hutton GJ. Regulatory effects of interferon-β on osteopontin and interleukin-17 expression in multiple sclerosis. J Interferon
                   Cytokine Res 2010;30:751-7.
               116.  Iaffaldano P, Ruggieri M, Viterbo RG, Mastrapasqua M, Trojano M. The improvement of cognitive functions is associated with a decrease
                   of plasma Osteopontin levels in Natalizumab treated relapsing multiple sclerosis. Brain Behav Immun 2014;35:176-81.
               117.  Mas A, Martínez A, de las Heras V, Bartolomé M, de la Concha EG, et al. The 795CT polymorphism in osteopontin gene is not associated
                   with multiple sclerosis in a Spanish population. Mult Scler 2007;13:250-2.
               118.  Biernacka-Lukanty J, Michalowska-Wender G, Michalak S, Raczak B, Kozubski W, et al. Polymorphism of the osteopontin gene and
                   clinical course of multiple sclerosis in the Polish population. Folia Neuropathol 2015;53:343-6.
               119.  Caillier S, Barcellos LF, Baranzini SE, Swerdlin A, Lincoln RR, et al; Multiple Sclerosis Genetics Group. Osteopontin polymorphisms
                   and disease course in multiple sclerosis. Genes Immun 2003;4:312-5.
               120. Chiocchetti A, Comi C, Indelicato M, Castelli L, Mesturini R, et al. Osteopontin gene haplotypes correlate with multiple sclerosis
                   development and progression. J Neuroimmunol 2005;163:172-8.
               121. Comi C, Cappellano G, Chiocchetti A, Orilieri E, Buttini S, et al. The impact of osteopontin gene variations on multiple sclerosis
                   development and progression. Clin Dev Immunol 2012;2012:212893.
               122. Londoño AC, Mora CA. Role of CXCL13 in the formation of the meningeal tertiary lymphoid organ in multiple sclerosis. F1000Res
                   2018;7:514.
               123. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of
                   patients with secondary progressive multiple sclerosis. Brain Pathol 2004;14:164-74.
               124. Bagaeva LV, Rao P, Powers JM, Segal BM. CXC chemokine ligand 13 plays a role in experimental autoimmune encephalomyelitis. J
                   Immunol 2006;176:7676-85.
               125. Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisäkk P, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation
                   is differentially linked to CNS immune cell recruitment. Brain 2006;129:200-11.
               126. Bai Z, Chen D, Wang L, Zhao Y, Liu T, et al. Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: a systematic
                   review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front Neurosci 2019;13:1026.
               127. Sellebjerg F, Börnsen L, Khademi M, Krakauer M, Olsson T, et al. Increased cerebrospinal fluid concentrations of the chemokine
                   CXCL13 in active MS. Neurology 2009;73:2003-10.
               128. Khademi M, Kockum I, Andersson ML, Iacobaeus E, Brundin L, et al. Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive
                   prognostic marker for the disease course. Mult Scler 2011;17:335-43.
               129. Irani DN. Regulated Production of CXCL13 within the Central Nervous System. J Clin Cell Immunol 2016;7:460.
               130. Brettschneider J, Czerwoniak A, Senel M, Fang L, Kassubek J, et al. The chemokine CXCL13 is a prognostic marker in clinically isolated
                   syndrome (CIS). PLoS One 2010;5:e11986.
               131. Piccio L, Naismith RT, Trinkaus K, Klein RS, Parks BJ, et al. Changes in B- and T-lymphocyte and chemokine levels with rituximab
                   treatment in multiple sclerosis. Arch Neurol 2010;67:707-14.
               132. Romme Christensen J, Ratzer R, Börnsen L, Lyksborg M, Garde E, et al. Natalizumab in progressive MS: results of an open-label, phase
                   2A, proof-of-concept trial. Neurology 2014;82:1499-507.
               133. Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb
                   Blood Flow Metab 2016;36:1481-507.
               134. Wang Y, Wu H, Wu X, Bian Z, Gao Q. Interleukin 17A promotes gastric cancer invasiveness via NF-κB mediated matrix
                   metalloproteinases 2 and 9 expression. PLoS One 2014;9:e96678.
               135. Moon SK, Cha BY, Kim CH. ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth
                   muscle cells via the regulation of NF-kappaB and AP-1: involvement of the ras dependent pathway. J Cell Physiol 2004;198:417-27.
               136. Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian LM. The metalloproteinase matrilysin proteolytically generates active
   35   36   37   38   39   40   41   42   43   44   45