Page 38 - Read Online
P. 38

Page 34  Toscano et al. Neuroimmunol Neuroinflammation 2021;8:14-41  I  http://dx.doi.org/10.20517/2347-8659.2020.12

                   of different methods to determine intrathecal synthesis. Clin Chem Lab Med 2019;57:1574-86.
               48.  Kaplan B, Aizenbud BM, Golderman S, Yaskariev R, Sela BA. Free light chain monomers in the diagnosis of multiple sclerosis. J
                   Neuroimmunol 2010;229:263-71.
               49.  Hassan-Smith G, Durant L, Tsentemeidou A, Assi LK, Faint JM, et al. High sensitivity and specificity of elevated cerebrospinal fluid
                   kappa free light chains in suspected multiple sclerosis. J Neuroimmunol 2014;276:175-9.
               50.  Desplat-Jégo S, Feuillet L, Pelletier J, Bernard D, Chérif AA, et al. Quantification of immunoglobulin free light chains in cerebrospinal
                   fluid by nephelometry. J Clin Immunol 2005;25:338-45.
               51.  Duranti F, Pieri M, Centonze D, Buttari F, Bernardini S, et al. Determination of κFLC and κ Index in cerebrospinal fluid: a valid
                   alternative to assess intrathecal immunoglobulin synthesis. J Neuroimmunol 2013;263:116-20.
               52.  Zeman D, Kušnierová P, Bartoš V, Hradílek P, Kurková B, et al. Quantitation of free light chains in the cerebrospinal fluid reliably
                   predicts their intrathecal synthesis. Ann Clin Biochem 2016;53:174-6.
               53.  Pieri M, Storto M, Pignalosa S, Zenobi R, Buttari F, et al. KFLC index utility in multiple sclerosis diagnosis: further confirmation. J
                   Neuroimmunol 2017;309:31-3.
               54.  Crespi I, Vecchio D, Serino R, Saliva E, Virgilio E, et al. K index is a reliable marker of intrathecal synthesis, and an alternative to IgG
                   index in multiple sclerosis diagnostic work-up. J Clin Med 2019;8:446.
               55.  Puthenparampil M, Altinier S, Stropparo E, Zywicki S, Poggiali D, et al. Intrathecal K free light chain synthesis in multiple sclerosis at
                   clinical onset associates with local IgG production and improves the diagnostic value of cerebrospinal fluid examination. Mult Scler Relat
                   Disord 2018;25:241-5.
               56.  Gaetani L, Di Carlo M, Brachelente G, Valletta F, Eusebi P, et al. Cerebrospinal fluid free light chains compared to oligoclonal bands as
                   biomarkers in multiple sclerosis. J Neuroimmunol 2020;339:577108.
               57.  Gurtner KM, Shosha E, Bryant SC, Andreguetto BD, Murray DL, et al. CSF free light chain identification of demyelinating disease:
                   comparison with oligoclonal banding and other CSF indexes. Clin Chem Lab Med 2018;56:1071-80.
               58.  Presslauer S, Milosavljevic D, Huebl W, Aboulenein-Djamshidian F, Krugluger W, et al. Validation of kappa free light chains as a
                   diagnostic biomarker in multiple sclerosis and clinically isolated syndrome: a multicenter study. Mult Scler 2016;22:502-10.
               59.  Leurs CE, Twaalfhoven H, Lissenberg-Witte BI, van Pesch V,Dujmovic I, et al. Kappa free light chains is a valid tool in the diagnostics of
                   MS: a large multicenter study. Mult Scler 2020;26:912-23.
               60.  Makshakov G, Nazarov V, Kochetova O, Surkova E, Lapin S, et al. Diagnostic and prognostic value of the cerebrospinal fluid
                   concentration of immunoglobulin free light chains in clinically isolated syndrome with conversion to multiple sclerosis. PLoS One
                   2015;10:e0143375.
               61.  Presslauer S, Milosavljevic D, Huebl W, Parigger S, Schneider-Koch G, et al. Kappa free light chains: diagnostic and prognostic
                   relevance in MS and CIS. PLoS One 2014;9:e89945.
               62.  Presslauer S, Milosavljevic D, Brücke T, Bayer P, Hübl W. Elevated levels of kappa free light chains in CSF support the diagnosis of
                   multiple sclerosis. J Neurol 2008;255:1508-14.
               63.  Ferraro D, Trovati A, Bedin R, Natali P, Franciotta D, et al. Cerebrospinal fluid kappa and lambda free light chains in oligoclonal band-
                   negative patients with suspected multiple sclerosis. Eur J Neurol 2020;27:461-7.
               64.  Vecchio D, Crespi I, Virgilio E, Naldi P, Campisi MP, et al. Kappa free light chains could predict early disease course in multiple sclerosis.
                   Mult Scler Relat Disord 2019;30:81-4.
               65.  Rinker JR 2nd, Trinkaus K, Cross AH. Elevated CSF free kappa light chains correlate with disability prognosis in multiple sclerosis.
                   Neurology 2006;67:1288-90.
               66.  Rudick RA, Medendorp SV, Namey M, Boyle S, Fischer J. Multiple sclerosis progression in a natural history study: predictive value of
                   cerebrospinal fluid free kappa light chains. Mult Scler 1995;1:150-5.
               67.  Rathbone E, Durant L, Kinsella J, Parker AR, Hassan-Smith G, et al. Cerebrospinal fluid immunoglobulin light chain ratios predict
                   disease progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 2018;89:1044-9.
               68.  Felgenhauer K, Reiber H. The diagnostic significance of antibody specificity indices in multiple sclerosis and herpes virus induced
                   diseases of the nervous system. Clin Investig 1992;70:28-37.
               69.  Tumani H, Tourtellotte WW, Peter JB, Felgenhauer K, The Optic Neuritis Study Group. Acute optic neuritis: combined immunological
                   markers and magnetic resonance imaging predict subsequent development of multiple sclerosis. J Neurol Sci 1998;155:44-9.
               70.  Brettschneider J, Tumani H, Kiechle U, Muche R, Richards G, et al. IgG antibodies against measles, rubella, and varicella zoster virus
                   predict conversion to multiple sclerosis in clinically isolated syndrome. PLoS One 2009;4:e7638.
               71.  Reiber H, Ungefehr S, Jacobi C. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler
                   1998;4:111-7.
               72.  Hottenrott T, Schorb E, Fritsch K, Dersch R, Berger B, et al. The MRZ reaction and a quantitative intrathecal IgG synthesis may be
                   helpful to differentiate between primary central nervous system lymphoma and multiple sclerosis. J Neurol 2018;265:1106-14.
               73.  Jarius S, Eichhorn P, Franciotta D, Petereit HF, Akman-Demir G, et al. The MRZ reaction as a highly specific marker of multiple
                   sclerosis: re-evaluation and structured review of the literature. J Neurol 2017;264:453-66.
               74.  Franciotta D, Salvetti M, Lolli F, Serafini B, Aloisi F. B cells and multiple sclerosis. Lancet Neurol 2008;7:852-8.
               75.  Godec MS, Asher DM, Murray RS, Shin ML, Greenham LW, et al. Absence of measles, mumps, and rubella viral genomic sequences
                   from multiple sclerosis brain tissue by polymerase chain reaction. Ann Neurol 1992;32:401-4.
               76.  Ibitoye R, Kemp K, Rice C, Hares K, Scolding N, et al. Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomark Med
                   2016;10:889-902.
   33   34   35   36   37   38   39   40   41   42   43