Page 44 - Read Online
P. 44

Page 40  Toscano et al. Neuroimmunol Neuroinflammation 2021;8:14-41  I  http://dx.doi.org/10.20517/2347-8659.2020.12

               226. Norgren N, Sundström P, Svenningsson A, Rosengren L, Stigbrand T, et al. Neurofilament and glial fibrillary acidic protein in multiple
                   sclerosis. Neurology 2004;63:1586-90.
               227. Cai L, Huang J. Neurofilament light chain as a biological marker for multiple sclerosis: a meta-analysis study. Neuropsychiatr Dis Treat
                   2018;14:2241-54.
               228. Martin SJ, McGlasson S, Hunt D, Overell J. Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: a meta-
                   analysis of case-control studies. J Neurol Neurosurg Psychiatry 2019;90:1059-67.
               229. Kuhle J, Nourbakhsh B, Grant D, Morant S, Barro C, et al. Serum neurofilament is associated with progression of brain atrophy and
                   disability in early MS. Neurology 2017;88:826-31.
               230. Quintana E, Coll C, Salavedra-Pont J, Muñoz-San Martín M, Robles-Cedeño R, et al. Cognitive impairment in early stages of
                   multiple sclerosis is associated with high cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain. Eur J Neurol
                   2018;25:1189-91.
               231. Kuhle J, Plavina T, Barro C, Disanto G, Sangurdekar D, et al. Neurofilament light levels are associated with long-term outcomes in
                   multiple sclerosis. Mult Scler 2019; doi: 10.1177/1352458519885613.
               232. Ferraro D, Guicciardi C, De Biasi S, Pinti M, Bedin R, et al. Plasma neurofilaments correlate with disability in progressive multiple
                   sclerosis patients. Acta Neurol Scand 2020;141:16-21.
               233. Disanto G, Adiutori R, Dobson R, Martinelli V, Dalla Costa G, et al; International Clinically Isolated Syndrome Study Group.
                   Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. J Neurol Neurosurg Psychiatry
                   2016;87:126-9.
               234. Martínez MA, Olsson B, Bau L, Matas E, Cobo Calvo Á, et al. Glial and neuronal markers in cerebrospinal fluid predict progression in
                   multiple sclerosis. Mult Scler 2015;21:550-61.
               235. Modvig S, Degn M, Roed H, Sørensen TL, Larsson HB, et al. Cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light
                   chain predict multiple sclerosis development and disability after optic neuritis. Mult Scler 2015;21:1761-70.
               236. Siller N, Kuhle J, Muthuraman M, Barro C, Uphaus T, et al. Serum neurofilament light chain is a biomarker of acute and chronic neuronal
                   damage in early multiple sclerosis. Mult Scler 2019;25:678-86.
               237. Varhaug KN, Barro C, Bjørnevik K, Myhr KM, Torkildsen Ø, et al. Neurofilament light chain predicts disease activity in relapsing-
                   remitting MS. Neurol Neuroimmunol Neuroinflamm 2018;5:e422.
               238. Chitnis T, Gonzalez C, Healy BC, Saxena S, Rosso M, et al. Neurofilament light chain serum levels correlate with 10-year MRI outcomes
                   in multiple sclerosis. Ann Clin Transl Neurol 2018;5:1478-91.
               239. Axelsson M, Malmeström C, Gunnarsson M, Zetterberg H, Sundström P, et al. Immunosuppressive therapy reduces axonal damage in
                   progressive multiple sclerosis. Mult Scler 2014;20:43-50.
               240. Novakova L, Axelsson M, Khademi M, Zetterberg H, Blennow K, et al. Cerebrospinal fluid biomarkers of inflammation and degeneration
                   as measures of fingolimod efficacy in multiple sclerosis. Mult Scler 2017;23:62-71.
               241. Kuhle J, Malmeström C, Axelsson M, Plattner K, Yaldizli O, et al. Neurofilament light and heavy subunits compared as therapeutic
                   biomarkers in multiple sclerosis. Acta Neurol Scand 2013;128:e33-6.
               242. Gunnarsson M, Malmeström C, Axelsson M, Sundström P, Dahle C, et al. Axonal damage in relapsing multiple sclerosis is markedly
                   reduced by natalizumab. Ann Neurol 2011;69:83-9.
               243. Akgün K, Kretschmann N, Haase R, Proschmann U, Kitzler HH, et al. Profiling individual clinical responses by high-frequency serum
                   neurofilament assessment in MS. Neurol Neuroimmunol Neuroinflamm 2019;6:e555.
               244. Traditional Versus Early Aggressive Therapy for Multiple Sclerosis Trial (TREAT-MS). Available from: https://clinicaltrials.gov/ct2/
                   show/NCT03500328. [Last accessed on 9 Jul 2020]
               245. Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. Immunobiology: the immune system in health and disease. 5th edition. New York:
                   Garland Science; 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27162/. [Last accessed on 9 Jul 2020]
               246. Sharief MK, Keir G, Thompson EJ. Intrathecal synthesis of IgM in neurological diseases: a comparison between detection of oligoclonal
                   bands and quantitative estimation. J Neurol Sci 1990;96:131-42.
               247. Villar LM, Masjuan J, González-Porqué P, Plaza J, Sádaba MC, et al. Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis.
                   Ann Neurol 2003;53:222-6.
               248. Mandrioli J, Sola P, Bedin R, Gambini M, Merelli E. A multifactorial prognostic index in multiple sclerosis. Cerebrospinal fluid IgM
                   oligoclonal bands and clinical features to predict the evolution of the disease. J Neurol 2008;255:1023-31.
               249. Magraner MJ, Bosca I, Simó-Castelló M, García-Martí G, Alberich-Bayarri A, et al. Brain atrophy and lesion load are related to CSF
                   lipid-specific IgM oligoclonal bands in clinically isolated syndromes. Neuroradiology 2012;54:5-12.
               250. Villar LM, Sádaba MC, Roldán E, Masjuan J, González-Porqué P, et al. Intrathecal synthesis of oligoclonal IgM against myelin lipids
                   predicts an aggressive disease course in MS. J Clin Invest 2005;115:187-94.
               251. Durante L, Zaaraoui W, Rico A, Crespy L, Wybrecht D, et al. Intrathecal synthesis of IgM measured after a first demyelinating event
                   suggestive of multiple sclerosis is associated with subsequent MRI brain lesion accrual. Mult Scler 2012;18:587-91.
               252. Boscá I, Magraner MJ, Coret F, Alvarez-Cermeño JC, Simó-Castelló M, et al. The risk of relapse after a clinically isolated syndrome is
                   related to the pattern of oligoclonal bands. J Neuroimmunol 2010;226:143-6.
               253. Ferraro D, Simone AM, Bedin R, Galli V, Vitetta F, et al. Cerebrospinal fluid oligoclonal IgM bands predict early conversion to clinically
                   definite multiple sclerosis in patients with clinically isolated syndrome. J Neuroimmunol 2013;257:76-81.
               254. Espiño M, Abraira V, Arroyo R, Bau L, Cámara C, et al. Assessment of the reproducibility of oligoclonal IgM band detection for its
                   application in daily clinical practice. Clin Chim Acta 2015;438:67-9.
   39   40   41   42   43   44   45   46   47   48   49