Page 92 - Read Online
P. 92

Page 160             Harry et al. Neuroimmunol Neuroinflammation 2020;7:150-65  I  http://dx.doi.org/10.20517/2347-8659.2020.07

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2020.

               REFERENCES
               1.   Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, et al. Emerging role of damage-associated molecular patterns derived from
                   mitochondria in inflammation. Trends Immunol 2011;32:157-64.
               2.   Boyapati RK, Tamborska A, Dorward DA, Ho GT. Advances in the understanding of mitochondrial DNA as a pathogenic factor in
                   inflammatory diseases. F1000Res 2017;6:169.
               3.   Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, et al. Oxidized mitochondrial DNA activated the NRLP3 inflammasome
                   during apoptosis. Immunity 2012;36:401-14.
               4.   O’Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol 2016;16:553-65.
               5.   Russell DG, Huang L, VanderVen BC. Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol
                   2019;19:291-304.
               6.   Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol 2020;184:101719.
               7.   Ghosh M, Xu Y, Pearse DD. Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2
                   cytokines. J Neuroinflammation 2016;13:9.
               8.   Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, et al. Identification of a unique TGF-beta-dependent molecular and
                   functional signature in microglia. Nat Neurosci 2014;17:131-43.
               9.   Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, et al. Comparison of polarization properties of human adult microglia
                   and blood-derived macrophages. Glia 2012;60:717-27.
               10.  Finsen B, Owens T. Innate immune responses in central nervous system inflammation. FEBS Lett 2011;585:3806-12.
               11.  Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, et al. Fate mapping analysis reveals that adult microglia derive from primitive
                   macrophages. Science 2010;330:841-5.
               12.  Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, et al. The microglial sensome revealed by direct RNA sequencing.
                   Nat Neurosci 2013;16:1896-905.
               13.  Holtman IR, Skola D, Glass CK. Transcriptional control of microglia phenotypes in health and disease. J Clin Invest 2017;127:3220-9.
               14.  Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest 2012;122:1164-71.
               15.  Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity
                   2016;44:505-15.
               16.  Borst K, Schwabenland M, Prinz M. Microglia metabolism in health and disease. Neurochem Int 2019;130:104331.
               17.  Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57:173-85.
               18.  Hermann DM, El-Ali A. The abluminal endothelial membrane in neurovascular remodeling in health and disease. Sci Signal
                   2012;5:re4.
               19.  Ifergan I, Kébir H, Bernard M, Wosik K, Dodelet-Devillers A, et al. The blood-brain barrier induces differentiation of migrating
                   monocytes into Th17-polarizing dendritic cells. Brain 2008;131:785-99.
               20.  Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, et al. Immunologic privilege in the central nervous system and the
                   blood-brain barrier. Cereb Blood Flow Metab 2013;33:13-21.
               21.  Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci 2007;30:235-58.
               22.  King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during
                   autoimmune demyelinating disease. Blood 2009;113:3190-7.
               23.  Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes
                   only under defined host conditions. Nat Neurosci 2007;12:1544-53.
               24.  Vallieres L, Sawchenko PE. Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J
                   Neurosci 2003;23:5197-207.
               25.  Trifilo MJ, Montalto-Morrison C, Stiles LN, Hurst KR, Hardison JL, et al. CXC chemokine ligand 10 controls viral infection in the
                   central nervous system: evidence for a role in innate immune response through recruitment and activation of natural killer cells. J Virol
                   2003;78:585-94.
               26.  González H, Pacheco R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflam
                   2014;11:201.
               27.  Li J1, Gran B, Zhang GX, Ventura ES, Siglienti I, et al. Differential expression and regulation of IL-23 and IL-12 subunits and
   87   88   89   90   91   92   93   94   95   96   97