Page 96 - Read Online
P. 96

Page 164             Harry et al. Neuroimmunol Neuroinflammation 2020;7:150-65  I  http://dx.doi.org/10.20517/2347-8659.2020.07

               141. Mander PK, Jekabsone A, Brown GC. Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J Immunol
                   2006;176:1046-52.
               142. Roy A, Jana A, Yatish K, Freidt MB, Fung YK, et al. Reactive oxygen species up-regulate CD11b in microglia via nitric oxide:
                   implications for neurodegenerative diseases. Free Radic Biol Med 2008;45:686-99.
               143. Taetzsch T, Levesque S, McGraw C, Brookins S, Luqa R, et al. Redox Regulation of NF-κB p50 and M1 Polarization in Microglia.
                   Glia 2015;63:423-40.
               144. Yuan YH, Sun JD, Wu MM, Hu JF, Peng SY, et al. Rotenone could activate microglia through NF-kB associated pathway. Neurochem
                   Res 2013;38:1553-60.
               145. Kletzien RF, Harris PK, Foellmi LA. Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific
                   regulation by hormones, nutrients, and oxidant stress. FASEB J 1994;8:174-81.
               146. Salvemini F, Franzé A, Iervolino A, Filosa S, Salzano S, et al. Enhanced glutathione levels and oxidoresistance mediated by increased
                   glucose-6-phosphate dehydrogenase expression. J Biol Chem 1999;274:2750-7.
               147. Mustacich D, Powis G. Thioredoxin reductase. Biochem J 2000;346:1-8.
               148. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid
                   Redox Signal 2008;10:179-206.
               149. Shen Y, Kapfhamer D, Minnella AM, Kim JE, Won SJ, et al. Bioenergetic state regulates innate inflammatory responses through the
                   transcriptional co-repressor CtBP. Nat Commun 2017;8:624.
               150. Wang L, Pavolu S, Du X, Bhuckory M, Xu H, et al. Glucose transporter 1 critically controls microglial activation through facilitating
                   glycolysis. Mol Neurodegener 2019;14:2.
               151. Kalsbeek MJ, Mulder L, Yi CX. Microglia energy metabolism in metabolic disorder. Mol Cell Endocrinol 2016;438:27-35.
               152. Payne J, Maher F, Simpson I, Mattice L, Davies P. Glucose transporter Glut 5 expression in microglial cells. Glia 1997;21:327-31.
               153. Hsieh C, Liu C, Lee C, Yu LE, Wang JY. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or
                   self-degradation. Sci Rep 2019;9:840.
               154. Chen J, Sun Z, Jin M, Tu Y, Wang S, et al. Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation
                   by regulating BV2 microglial M1/M2 polarization through the NF-κB pathway. J Neuroimmunol 2017;305:108-14.
               155. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, et al. Succinate is an inflammatory signal that induces
                   IL-1β through HIF-1α. Nature 2013;496:238-42.
               156. O’Neill LAJ, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med 2016;213:15-23.
               157. Wang F, Zhang S, Jeon R, Vuckovic, Jiang X, et al. Interferon gamma induces reversible metabolic reprogramming of M1
                   macrophages to sustain cell viability and pro-inflammatory activity. EbioMedicine 2018;30:303-16.
               158. Choi SJ, Shin IJ, Je KH, Min EK, Kim EJ, et al. Hypoxia antagonizes glucose deprivation on interleukin 6 expression in an Akt
                   dependent, but HIF-1/2α independent manner. PLoS One 2013;8:e58662.
               159. Churchward MA, Tchir DR, Todd KG. Microglial function during glucose deprivation: inflammatory and neuropsychiatric
                   implications. Mol Neurobiol 2018;55:1477-87.
               160. Weng F, Zhang S, Vuckovic I, Ryounghoon J, Lerman A, et al. Glycolytic stimulation is not a requirement for M2 macrophage
                   differentiation. Cell Metab 2018;28:463-75.
               161. Venter G, Oerlemans FTJJ, Wijers M, Willemse M, Fransen JAM, et al. Glucose controls morphodynamics of LPS-stimulated
                   macrophages. PLoS One 2014;9:e96786.
               162. Meiser J, Krämer L, Sapcariu SC, Battello N, Ghelfi J, et al. Pro-inflammatory macrophages sustain pyruvate oxidation through
                   pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J Biol Chem 2016;291:3932-46.
               163. Shay JE, Celeste-Simon M. Hypoxia-inducible factors: crosstalk between inflammation and metabolism. Semin Cell Dev Biol
                   2012;23:389-94.
               164. Liu PS, Wang H, Li X, Chao T, Teav T, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic
                   reprogramming. Nat Immunol 2017;8:985-94.
               165. Moon JS, Hisata S, Park MA, DeNicola GM, Ryter SW, et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3
                   inflammasome activation. Cell Rep 2015;12:102-15.
               166. Xie M, Yu Y, Kang R, Zhu S, Yang L, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat
                   Commun 2016;7:13280.
               167. Wen H, Miao EA, Ting JP. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 2013;39:432-41.
               168. Adamczak SE, de Rivero Vaccari JP, Dale G, Brand FJ, Nonner D, et al. Pyroptotic neuronal cell death mediated by the AIM2
                   inflammasome. J Cereb Blood Flow Metab 2014;34:621-29.
               169. Kaushal V, Dye R, Pakavathkumar P. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory
                   interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ 2015;22:1676-86.
               170. Yogarajah T, Ong KC, Perera D, Wong KT. AIM2 inflammasome-mediated pyroptosis in enterovirus A71-infected neuronal cells
                   restricts viral replication. Sci Rep 2017;7:5845.
               171. Minkiewicz J, de Rivero Vaccari JP, Keane RW. Human astrocytes express a novel NLRP2 inflammasome. Glia 2013;87:3655-67.
               172. Freeman L, Guo H, David CN, Brickey WJ, Jha S, et al. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation
                   in microglia and astrocytes. J Exp Med 2017;214:1351-70.
               173. de Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for
                   central nervous system injury. J Cereb Blood Flow Metab 2014;34:369-75.
               174. Burm SM, Zuiderwijk-Sick EA, ‘t Jong AE, van der Putten C, Veth J, et al. Inflammasome-induced IL-1β secretion in microglia is
                   characterized by delayed kinetics and is only partially dependent on inflammatory caspases. J Neurosci 2015;35:678-87.
               175. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome
   91   92   93   94   95   96   97   98   99   100   101