Page 95 - Read Online
P. 95
Harry et al. Neuroimmunol Neuroinflammation 2020;7:150-65 I http://dx.doi.org/10.20517/2347-8659.2020.07 Page 163
filopodia. Cell Reports 2019:27;2895-908.
108. Madry C, Kyrargyri V, Arancibia-Carcamo IL, Jolivet R, Kohsaka S, et al. Microglial ramification, surveillance, and interleukin-1beta
release are regulated by the two-pore domain K(+) channel THIK-1. Neuron 2018;97:299-312.
109. Ghosh S, Castillo E, Frias ES, Swanson RA. Bioenergetic regulation of microglia. Glia 2018;66:1200-12.
110. Cherry JD, Olschowka JA, O’Banion MK. Are ‘resting’ microglia more ‘m2’? Front Immunol 2014;5:594.
111. Baik SH, Kang S, Lee W, Choi H, Chung S, et al. A breakdown in metabolic reprogramming causes microglia dysfunction in
Alzheimer’s disease. Cell Metab 2019;30:493-507.e6.
112. Holland R, McIntosh AL, Finucane OM, Mela V, Rubio-Araiz A, et al. Inflammatory microglia are glycolytic and iron retentive and
typify the microglia in APP/PS1 mice. Brain Behav Immun 2017;68:183-96.
113. McIntosh A, Mela V, Harty C, Minogue AM, Costello DA, et al. Iron accumulation in microglia triggers a cascade of events that leads
to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol 2019;29:606-21.
114. Wang T, Liu H, Lian G, Zhang SY, Wang X, et al. HIF1 α -induced glycolysis metabolism is essential to the activation of inflammatory
macrophages. Mediators Inflamm 2017;2017:1-10.
115. Nair S, Sobotka KS, Joshi P, Gressens P, Fleiss B, et al. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a
metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia 2019;67:1047-61.
116. Chénais B, Morjani H, Drapier JC. Impact of endogenous nitric oxide on microglial cell energy metabolism and labile iron pool. J
Neurochem 2002;81:615-23.
117. Banati RB, Egensperger R, Maassen A, Hager G, Kreutzberg GW, et al. Mitochondria in activated microglia in vitro. J Neurocytol
2004;33:535-41.
118. Ferger AI, Campanelli L, Reimer V, Muth KN, Merdian I, et al. Effects of mitochondrial dysfunction on the immunological properties
of microglia J Neuroinflamm 2010;7:45.
119. Finucane OM, Sugrue J, Rubio-Araiz A, Guillot-Sestier MV, Lynch MA. The NLRP3 inflammasome modulates glycolysis by
increasing PFKFB3 in an IL-1beta dependent manner in macrophages. Sci Rep 2019;9:4034.
120. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of
macrophages. Science 2017;356:513-9.
121. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 2011;89:557-63.
122. Biswas SK, Chittezhath M, Shalova IN, Lim JY. Macrophage polarization and plasticity in health and disease. Immunol Res 2012
53:11-24.
123. Huang SC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative
activation of macrophages. Nat Immunol 2014;15:846-55.
124. Liu PS, Wang H, Li X, Chao T, Teav T, et al. Alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic
reprogramming. Nat Immunol 2017;18:985-94.
125. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated
inflammation. Cell Metab 2006;4:13-24.
126. Mills CD, Kincaid K, Alt JM, Hellman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000;164:6166-
73.
127. De Simone R, Ajmone-Cat MA, Pandolfi M, Bernardo A, De Nuccio C, et al. The mitochondrial uncoupling protein-2 is a master
regulator of both M1 and M2 microglial responses. J Neurochem 2015;135:147-56.
128. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, et al. TLR signalling augments macrophage bactericidal activity
through mitochondrial ROS. Nature 2011;472:476-80.
129. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE. Mitochondrial dysfunction prevents repolarization of
inflammatory macrophages. Cell Rep 2016;17:684-96.
130. Poderoso JJ, Helfenberger K, Poderoso C. The effect of nitric oxide on mitochondrial respiration. Nitric Oxide 2019;88:61-72.
131. Hu Y, Mai W, Chen L, Cao K, Zhang B, et al. mTOR-mediated metabolic reprogramming shapes distinct microglia functions in
response to lipopolysaccharide and ATP. Glia 2020;68:1031-45.
132. Li D, Wang C, Yao Y, Chen L, Liu G, et al. mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift
in microglia phenotype from M1 type to M2 type. FASEB J 2016;30:3388-99.
133. Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, et al. TREM2 maintains microglial metabolic fitness in alzheimer’s
disease. Cell 2017;170:649-63.e13.
134. Zhao X, Liao Y, Morgan S, Mathur R, Feustel P, et al. Noninflammatory changes of microglia are sufficient to cause epilepsy. Cell Rep
2018;22:2080-93.
135. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev
2007;87:245-313.
136. Pawate S, Shen Q, Fan F, Bhat NR. Redox regulation of glial inflammatory response to lipopolysaccharide and interferon gamma. J
Neurosci Res 2004;77:540-51.
137. Qin L, Liu Y, Wang T, Wei SJ, Block ML, et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory
gene expression in activated microglia. J Biol Chem 2004;279:1415-21.
138. Loane DJ, Stoica BA, Pajoohesh-Ganji A, Byrnes KR, Faden AI. Activation of metabotropic glutamate receptor 5 modulates
microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 2009;284:15629-39.
139. Choi SH, Aid S, Kim HW, Jackson SH, Bosetti F. Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial
activation during neuroinflammation. J Neurochem 2012;120:292-301.
140. Eguchi H, Fujiwara N, Sakiyama H, Yoshihara D, Suzuki K. Hydrogen peroxide enhances LPS-induced nitric oxide production via the
expression of interferon beta in BV-2 microglial cells. Neurosci Lett 2011;494:29-33.