Page 94 - Read Online
P. 94

Page 162             Harry et al. Neuroimmunol Neuroinflammation 2020;7:150-65  I  http://dx.doi.org/10.20517/2347-8659.2020.07

               67.  Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, et al. Macrophage activation and polarization: nomenclature and
                   experimental guidelines. Immunity 2014;41:14-20.
               68.  Loane D, Kumar A. Microglia in the TBI Brain: the good, the bad, And the dysregulated. Exp Neurol 2016;275: 316-27.
               69.  Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states Br J Pharmacol 2016;173:649-65.
               70.  Gerrick KY, Gerrick ER, Gupta A, Wheelan SJ, Yegnasubramanian S, et al. Transcriptional profiling identifies novel regulators of
                   macrophage polarization. PLoS One 2018;13:e0208602.
               71.  Ransohoff RM, A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 2016;19:987-91.
               72.  Stein M. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic
                   macrophage activation. J Exp Med 1992;176:287-92.
               73.  Doyle AG, Herbein G, Montaner LJ, Minty AJ, Caput D, et al. Interleukin-13 alters the activation state of murine macrophages in
                   vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol 1994;24:1441-5.
               74.  Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014;6:1-13.
               75.  Mills EL, O’Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol
                   2016;46:13-21.
               76.  Murray PJ. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin
                   Pharmacol 2006;6:379-86.
               77.  Bordt EA, Polster BM. NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation:
                   a bipartisan affair? Free Radic Biol Med 2014;76:34-46.
               78.  Dashty M. A quick look at biochemistry: carbohydrate metabolism. Clin Biochem 2013;46:1339-52.
               79.  Liemburg-Apers DC, Schirris TJ, Russel FG, Willems PH, Koopman WJ. Mitoenergetic dysfunction triggers a rapid compensatory
                   increase in steady-state glucose flux. Biophys J 2015;109:1372-86.
               80.  Vazquez A, Liu J, Zhou Y, Oltvai ZN. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC Syst Biol 2010;4:58.
               81.  Warburg O. On respiratory impairment in cancer cells. Science 1956;124:269-70.
               82.  Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation.
                   Science 2009;324:1029-33.
               83.  Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015;42:406-17.
               84.  Kelly B, O’Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 2015;25:771-84.
               85.  Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol 2017;17:608-20.
               86.  Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol
                   2019;10:1462.
               87.  Zuo H, Wan Y. Metabolic reprogramming in mitochondria of myeloid cells. Cells 2020;9:5.
               88.  Biswas SK, Mantovani A. Orchestration of metabolism by macrophages. Cell Metab 2012;15:432-7.
               89.  Ryan DG, O’Neill LAJ. Krebs cycle reborn in macrophage immunometabolism. Annu Rev Immunol 2020; Epub ahead of print. doi:
                   10.1146/annurev-immunol-081619-104850
               90.  Bernhart E, Kollroser M, Rechberger G, Reicher H, Heinemann A. Lysophosphatidic acid receptor activation affects the C13NJ
                   microglia cell line proteome leading to alterations in glycolysis, motility, and cytoskeletal architecture. Proteomics 2010;10:141-58.
               91.  Moss DW, Bates TE. Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated
                   decreases in mitochondrial and cellular function. Eur J Neurosci 2001;13:529-38.
               92.  Zuo H, Wan Y. Metabolic reprogramming in mitochondria of myeloid cells. Cell 2020;9:5.
               93.  Lartigue L, Faustin B. Mitochondria: Metabolic regulators of innate immune responses to pathogens and cell stress. Int J Biochem
                   Cell Biol 2013;45:2052-56.
               94.  Voloboueva LA, Emery JF, Sun X, Giffard RG. Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is
                   modulated by mitochondrial glucose-regulated protein 75/mortalin. FEBS Lett 2013;587:756-62.
               95.  Gimeno-Bayon J, Lopez-Lopez A, Rodriguez MJ, Mahy N. Glucose pathways adaptation supports acquisition of activated microglia
                   phenotype. J Neurosci Res 2014;92:723-31.
               96.  Chenais B, Morjani H, Drapier JC. Impact of endogenous nitric oxide on microglial cell energy metabolism and labile iron pool. J
                   Neurochem 2002;81:615-23.
               97.  Rodríguez-Prados JC, Través PG, Cuenca J, Rico D, Aragones J, et al. Substrate fate in activated macrophages: a comparison between
                   innate, classic, and alternative activation. J Immunol 2010;185:605-14.
               98.  Odegaard JI, Chawla A. Alternative macrophage activation and metabolism. Annu Rev Pathol 2011;6:275-97.
               99.  Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J
                   Pathol 2013;229:176-85.
               100. Galvan-Pena S, O’Neill LA. Metabolic reprograming in macrophage polarization. Front Immunol 2014;5:420.
               101. Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol 2017;18:488-98.
               102. Newsholme P, Curi R, Gordon S, Newsholme EA. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by
                   murine macrophages. Biochem J 1986;239:121-5.
               103. Newsholme P, Gordon S, Newsholme EA. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies
                   by mouse macrophages. Biochem J 1987;242:631-6.
               104. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, et al. The sedoheptulose kinase CARKL directs macrophage polarization
                   through control of glucose metabolism. Cell Metab 2012;15:813-26.
               105. Blagih J, Jones RG. Polarizing macrophages through reprogramming of glucose metabolism. Cell Metab 2012;15:793-5.
               106. Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, et al. ATP synthesis and storage. Purinergic Signal 2012;8:343-57.
               107.  Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, et al. Nanoscale surveillance of the brain by microglia via cAMP-regulated
   89   90   91   92   93   94   95   96   97   98   99