Page 247 - Read Online
P. 247

Raevsky et al. Neuroimmunol Neuroinflammation 2018;5:33  I  http://dx.doi.org/10.20517/2347-8659.2018.34          Page 9 of 10


               Financial support and sponsorship
               This work was supported by a grant from the Jack Brown and Family Alzheimer’s Disease Research Founda-
               tion. The authors acknowledge support for this study from Life Chemicals Ltd. (Kiev, Ukraine; http://www.
               lifechemicals.com).

               Conflicts of interest
               The authors declare no conflict of interest. M. Sharifi declares the view presented in this article are those of
               the author and do not reflect those of the US Food and Drug Administration. No official endorsement is in-
               tended nor should be inferred.

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2018.

                 REFERENCES

               1.   Brown GC, Vilalta A. How microglia kill neurons. Brain Res 2015;1628:288-97.
               2.   Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D. Cysteine cathepsins: from structure, function and regulation to new
                   frontiers. Biochim Biophys Acta 2012;1824:68-88.
               3.   Siklos M, BenAissa M, Thatcher GR. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain
                   and cathepsin inhibitors. Acta Pharm Sin B 2015,5:506-19.
               4.   Gan L, Ye S, Chu A, Anton K, Yi S, Vincent VA, von Schack D, Chin D, Murray J, Lohr S, Patthy L, Gonzalez-Zulueta M, Nikolich K,
                   Urfer R. Identification of cathepsin B as a mediator of neuronal death induced by A beta-activated microglial cells using a functional
                   genomics approach. J Biol Chem 2004;279:5565-72.
               5.   Kingham PJ, Pocock JM. Microglial secreted cathepsin B induces neuronal apoptosis. J Neurochem 2001;76:1475-84.
               6.   Liuzzo JP, Petanceska SS, Devi LA. Neurotrophic factors regulate cathepsin S in macrophages and microglia: A role in the degradation
                   of myelin basic protein and amyloid beta peptide. Mol Med 1999;5:334-43.
               7.   Ryan RE, Sloane BF, Sameni M, Wood PL. Microglial cathepsin B: an immunological examination of cellular and secreted species. J
                   Neurochem 1995;65:1035-45.
               8.   Hook G, Jacobsen JS, Grabstein K, Kindy M, Hook V. Cathepsin B is a new drug target for traumatic brain injury therapeutics: evidence
                   for E64d as a promising lead drug candidate. Front Neurol 2015;6:178.
               9.   Cataldo AM, Nixon RA. Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl
                   Acad Sci U S A 1990;87:3861-5.
               10.  Nakamura Y, Takeda M, Suzuki H, Hattori H, Tada K, Hariguchi S, Hashimoto S, Nishimura T. Abnormal distribution of cathepsins in
                   the brain of patients with Alzheimers disease. Neurosci Lett 1991;130:195-8.
               11.  Sun Y, Rong X, Lu W, Peng Y, Li J, Xu S, Wang L, Wang X. Translational study of Alzheimer’s disease (AD) biomarkers from brain tis-
                   sues in AβPP/PS1 mice and serum of AD patients. J Alzheimers Dis 2015;45:269-82.
               12.  Sundelöf J, Sundström J, Hansson O, Eriksdotter-Jönhagen M, Giedraitis V, Larsson A, Degerman-Gunnarsson M, Ingelsson M, Mint-
                   hon L, Blennow K, Kilander L, Basun H, Lannfelt L. Higher cathepsin B levels in plasma in Alzheimer’s disease compared to healthy
                   controls. J Alzheimers Dis 2010;22:1223-30.
               13.  Zhang J, Goodlett DR, Quinn JF, Peskind E, Kaye JA, Zhou Y, Pan C, Yi E, Eng J, Wang Q, Aebersold RH, Montine TJ. Quantitative
                   proteomics of cerebrospinal fluid from patients with Alzheimer disease. J Alzheimers Dis 2005;7:125-33.
               14.  Ni J, Wu Z, Peterts C, Yamamoto K, Qing H, Nakanishi H. The critical role of proteolytic relay through cathepsins B and E in the phe-
                   notypic change of microglia/macrophage. J Neurosci 2015;35:12488-501.
               15.  Kindy MS, Yu J, Zhu H, El-Amouri SS, Hook V, Hook GR. Deletion of the cathepsin B gene improves memory deficits in a transgenic
                   Alzheimer’s disease mouse model expressing AβPP containing the wild-type β-secretase site sequence. J Alzheimers Dis 2012;29:827-
                   40.
               16.  Ha SD, Martins A, Khazaie K, Han J, Chan BM, Kim SO. Cathepsin B is involved in the trafficking of TNF-alpha-containing vesicles
                   to the plasma membrane in macrophages. J Immunol 2008;181:690-7.
               17.  Terada K, Yamada J, Hayashi Y, Wu Z, Uchiyama Y, Peters C, Nakanishi H. Involvement of cathepsin B in the processing and secretion
                   of interleukin-1beta in chromogranin A-stimulated microglia. Glia 2010;58:114-24.
               18.  Wendt W, Schulten R, Stichel CC, Lübbert H. Intra- versus extracellular effects of microglia-derived cysteine proteases in a conditioned
                   medium transfer model. J Neurochem 2009;110:1931-41.
               19.  Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT. The NALP3
                   inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 2008;9:857-65.
               20.  Huang Z, Mcgowan EB, Detwiler TC. Ester and amide derivatives of E64c as inhibitors of platelet calpains. J Med Chem 1992;35:2048-
                   54.
   242   243   244   245   246   247   248   249   250   251   252