Page 99 - Read Online
P. 99

7.   Frösen J, Piippo  A, Paetau  A, Kangasniemi  M, Niemelä M,   25.  Morimoto  M,  Miyamoto  S,  Mizoguchi  A, Kume  N,  Kita  T,
              Hernesniemi J, Jaaskelainen J. Remodeling of saccular cerebral   Hashimoto N. Mouse model of cerebral aneurysm: experimental
              artery aneurysm wall is associated with rupture: histological analysis   induction by renal hypertension and local hemodynamic changes.
              of 24 unruptured and 42 ruptured cases. Stroke 2004;35:2287‑93.  Stroke 2002;33:1911‑5.
           8.   Jayaraman T, Berenstein V, Li X, Mayer J, Silane M, Shin YS,   26.  Nuki  Y, Tsou  TL, Kurihara  C, Kanematsu  M, Kanematsu  Y,
              Niimi Y, Kilic T, Gunel M, Berenstein A. Tumor necrosis factor   Hashimoto  T. Elastase‑induced intracranial aneurysms in
              alpha is a key modulator of inflammation in cerebral aneurysms.   hypertensive mice. Hypertension 2009;54:1337‑44.
              Neurosurgery 2005;57:558‑64.                    27.  Hosaka K, Downes DP, Nowicki KW, Hoh BL. Modified murine
           9.   Laaksamo E, Tulamo R, Liiman A, Baumann M, Friedlander RM,   intracranial aneurysm model: aneurysm formation and rupture by
              Hernesniemi J, Kangasniemi M, Niemela M, Laakso A, Frosen J.   elastase and hypertension. J Neurointerv Surg 2014;6:474‑9.
              Oxidative stress is associated with cell death, wall degradation,   28.  Jou LD, Lee DH, Morsi H, Mawad ME. Wall shear stress on ruptured
              and increased risk of rupture of the intracranial aneurysm wall.   and unruptured intracranial aneurysms at the internal carotid artery.
              Neurosurgery 2013;72:109‑17.                        AJNR Am J Neuroradiol 2008;29:1761‑7.
           10.  Tulamo  R, Frösen J, Junnikkala  S, Paetau  A, Pitkäniemi J,   29.  Takeuchi S, Karino T. Flow patterns and distributions of fluid velocity
              Kangasniemi M, Niemela M, Jaaskelainen J, Jokitalo E, Karatas A,   and wall shear stress in the human internal carotid and middle
              Hernesniemi J, Meri S. Complement activation associates with   cerebral arteries. World Neurosurg 2010;73:174‑85.
              saccular cerebral artery aneurysm wall degeneration and rupture.   30.  Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K,
              Neurosurgery 2006;59:1069‑76.                       Morita A, Kirino T. Magnitude and role of wall shear stress on cerebral
           11.  Hasan  D, Chalouhi  N, Jabbour  P, Hashimoto  T. Macrophage   aneurysm: computational fluid dynamic study of 20 middle cerebral
              imbalance  (M1  vs. M2) and upregulation of mast cells in wall   artery aneurysms. Stroke 2004;35:2500‑5.
              of ruptured human cerebral aneurysms: preliminary results.   31.  Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K, Hashimoto N.
              J Neuroinflammation 2012;9:222.                     Impact of monocyte chemoattractant protein‑1 deficiency  on
           12.  Laaksamo E, Tulamo R, Baumann M, Dashti R, Hernesniemi J,   cerebral aneurysm formation. Stroke 2009;40:942‑51.
              Juvela S, Niemela M, Laakso A. Involvement of mitogen‑activated   32.  Aoki  T, Kataoka  H, Morimoto  M, Nozaki  K, Hashimoto  N.
              protein kinase signaling in growth and rupture of human intracranial   Macrophage‑derived matrix metalloproteinase‑2 and ‑9 promote
              aneurysms. Stroke 2008;39:886‑92.                   the progression of cerebral aneurysms in rats. Stroke 2007;38:162‑9.
           13.  Kataoka  K, Taneda  M, Asai  T, Kinoshita  A, Ito  M, Kuroda  R.   33.  Aoki T, Kataoka H, Shimamura M, Nakagami H, Wakayama K,
              Structural fragility and inflammatory response of ruptured cerebral   Moriwaki T, Ishibashi R, Nozaki K, Morishita R, Hashimoto N.
              aneurysms. A comparative study between ruptured and unruptured   NF‑kappaB is a key mediator of cerebral aneurysm formation.
              cerebral aneurysms. Stroke 1999;30:1396‑401.        Circulation 2007;116:2830‑40.
           14.  Krischek B, Kasuya H, Tajima A, Akagawa H, Sasaki T, Yoneyama T,   34.  Aoki T, Nishimura M, Matsuoka T, Yamamoto K, Furuyashiki T,
              Ujiie H, Kubo O, Bonin M, Takakura K, Hori T, Inoue I. Network‑based   Kataoka H, Kitaoka S, Ishibashi R, Ishibazawa A, Miyamoto S,
              gene expression analysis of intracranial aneurysm tissue reveals role   Morishita  R, Ando  J, Hashimoto  N, Nozaki  K, Narumiya  S.
              of antigen presenting cells. Neuroscience 2008;154:1398‑407.  PGE(2)  ‑EP(2) signalling in endothelium is activated by
           15.  Kurki  MI,  Häkkinen  SK,  Frösen  J,  Tulamo  R,  von  und  zu   haemodynamic stress and induces cerebral aneurysm through an
              Fraunberg M, Wong G, Tromp G, Niemela M, Hernesniemi J,   amplifying loop via NF‑κB. Br J Pharmacol 2011;163:1237‑49.
              Jaaskelainen JE, Yla‑Herttuala S. Upregulated signaling pathways   35.  Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van
              in ruptured human saccular intracranial aneurysm wall: an   Rooijen N, Lawton MT, Young WL, Liang EI, Nuki Y, Hashimoto T.
              emerging regulative role of Toll‑like receptor signaling and nuclear   Critical  roles  of  macrophages  in  the  formation  of  intracranial
              factor‑kappaB, hypoxia‑inducible factor‑1A, and ETS transcription   aneurysm. Stroke 2011;42:173‑8.
              factors. Neurosurgery 2011;68:1667‑75.          36.  Fukuda S, Hashimoto N, Naritomi H, Nagata I, Nozaki K, Kondo S,
           16.  Shi  C, Awad  IA, Jafari  N, Lin  S, Du  P, Hage  ZA, Shenkar  R,   Kurino  M, Kikuchi  H. Prevention of rat cerebral aneurysm
              Getch CC, Bredel M, Batjer HH, Bendok BR. Genomics of human   formation by inhibition of nitric oxide synthase.  Circulation
              intracranial aneurysm wall. Stroke 2009;40:1252‑61.  2000;101:2532‑8.
           17.  Li  L, Yang  X, Jiang F, Dusting  GJ, Wu Z. Transcriptome‑wide   37.  Aoki T, Fukuda M, Nishimura M, Nozaki K, Narumiya S. Critical role
              characterization of gene expression associated with unruptured   of TNF‑alpha‑TNFR1 signaling in intracranial aneurysm formation.
              intracranial aneurysms. Eur Neurol 2009;62:330‑7.   Acta Neuropathol Commun 2014;2:34.
           18.  Peters DG, Kassam AB, Feingold E, Heidrich‑O’Hare E, Yonas H,   38.  Moriwaki  T, Takagi  Y, Sadamasa  N, Aoki  T, Nozaki  K,
              Ferrell  RE,  Brufsky  A.  Molecular  anatomy  of  an  intracranial   Hashimoto  N. Impaired progression of cerebral aneurysms in
              aneurysm: coordinated expression of genes involved in wound   interleukin‑1beta‑deficient mice. Stroke 2006;37:900‑5.
              healing and tissue remodeling. Stroke 2001;32:1036‑42.  39.  Sadamasa  N, Nozaki  K, Hashimoto  N. Disruption of gene for
           19.  Inoue K, Mineharu Y, Inoue S, Yamada S, Matsuda F, Nozaki K,   inducible nitric oxide synthase reduces progression of cerebral
              Takenaka K, Hashimoto N, Koizumi A. Search on chromosome   aneurysms. Stroke 2003;34:2980‑4.
              17 centromere reveals TNFRSF13B as a susceptibility gene   40.  Starke RM, Chalouhi N, Jabbour PM, Tjoumakaris SI, Gonzalez LF,
              for intracranial aneurysm: a preliminary study.  Circulation   Rosenwasser RH, Wada K, Shimada K, Hasan DM, Greig NH,
              2006;113:2002‑10.                                   Owens GK, Dumont AS. Critical role of TNF‑α in cerebral aneurysm
           20.  Low  SK,  Zembutsu  H,  Takahashi  A,  Kamatani  N,  Cha  PC,   formation and progression to rupture.  J  Neuroinflammation
              Hosono N, Kubo M, Matsuda K, Nakamura Y. Impact of LIMK1,   2014;11:77.
              MMP2 and TNF‑α variations for intracranial aneurysm in Japanese   41.  Yokoi T, Isono T, Saitoh M, Yoshimura Y, Nozaki K. Suppression of
              population. J Hum Genet 2011;56:211‑6.              cerebral aneurysm formation in rats by a tumor necrosis factor‑a
           21.  Ruigrok YM, Rinkel GJ, Wijmenga C. The versican gene and the   inhibitor. J Neurosurg 2014;120:1193‑200.
              risk of intracranial aneurysms. Stroke 2006;37:2372‑4.  42.  Hayden  MS, Ghosh  S. NF‑kappaB, the first quarter‑century:
           22.  Kataoka  H, Aoki  T. Molecular basis for the development of   remarkable progress and outstanding questions.  Genes Dev
              intracranial aneurysm. Expert Rev Neurother 2010;10:173‑87.  2012;26:203‑34.
           23.  Aoki T, Nishimura M. The development and the use of experimental   43.  Aoki T, Nishimura M. Targeting chronic inflammation in cerebral
              animal models to study the underlying mechanisms of CA formation.   aneurysms: focusing on NF‑kappaB as a putative target of medical
              J Biomed Biotechnol 2011;2011:535921.               therapy. Expert Opin Ther Targets 2010;14:265‑73.
           24.  Hashimoto N, Handa H, Hazama F. Experimentally induced cerebral   44.  Aoki  T, Nishimura  M, Kataoka  H, Ishibashi  R, Nozaki  K,
              aneurysms in rats. Surg Neurol 1978;10:3‑8.         Hashimoto N. Reactive oxygen species modulate growth of cerebral


          Neuroimmunol Neuroinflammation | Volume 2 | Issue 2 | April 15, 2015                              91
   94   95   96   97   98   99   100   101   102   103   104