Page 121 - Read Online
P. 121

28.  Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance:   inhibition of nuclear factor‑kappaB and Ets with chimeric decoy
              mechanically coupling the extracellular matrix with the nucleus. Nat   oligodeoxynucleotide treatment. Neurosurgery 2012;70:1534‑43.
              Rev Mol Cell Biol 2009;10:75‑82.                46.  Aoki T, Fukuda M, Nishimura M, Nozaki K, Narumiya S. Critical role
           29.  Takeichi M. The cadherins: cell‑cell adhesion molecules controlling   of TNF‑alpha‑TNFR1 signaling in intracranial aneurysm formation.
              animal morphogenesis. Development 1988;102:639‑55.  Acta Neuropathol Commun 2014;2:34.
           30.  Jamous MA, Nagahiro S, Kitazato KT, Tamura T, Aziz HA, Shono M,   47.  Hoh BL, Hosaka K, Downes DP, Nowicki KW, Wilmer EN, Velat GJ,
              Satoh K. Endothelial injury and inflammatory response induced by   Scott EW. Stromal cell‑derived factor‑1 promoted angiogenesis
              hemodynamic changes preceding intracranial aneurysm formation:   and inflammatory cell infiltration in aneurysm walls. J Neurosurg
              experimental study in rats. J Neurosurg 2007;107:405‑11.  2014;120:73‑86.
           31.  Kataoka  K, Taneda  M, Asai  T, Kinoshita  A, Ito  M, Kuroda  R.   48.  Grunewald M, Avraham I, Dor Y, Bachar‑Lustig E, Itin A, Jung S,
              Structural fragility and inflammatory response of ruptured cerebral   Chimenti S, Landsman L, Abramovitch R, Keshet E. VEGF‑induced
              aneurysms. A comparative study between ruptured and unruptured   adult neovascularization: recruitment, retention, and role of
              cerebral aneurysms. Stroke 1999;30:1396‑401.        accessory cells. Cell 2006;124:175‑89.
           32.  Kurki  MI, Häkkinen S‑K, Frösen J, Tulamo  R, von und zu   49.  Ota R, Kurihara C, Tsou TL, Young WL, Yeghiazarians Y, Chang M,
              Fraunberg M, Wong G, Tromp G, Niemelä M, Hernesniemi J,   Mobashery  S, Sakamoto  A, Hashimoto  T.  Roles of matrix
              Jääskeläinen JE, Ylä‑Herttuala S. Upregulated signaling pathways   metalloproteinases in flow‑induced outward vascular remodeling.
              in ruptured human saccular intracranial aneurysm wall: an emerging   J Cereb Blood Flow Metab 2009;29:1547‑58.
              regulative role of toll‑like receptor signaling and nuclear factor‑κB,   50.  Kim  SC, Singh  M, Huang  J, Prestigiacomo  CJ, Winfree  CJ,
              hypoxia‑inducible factor‑1A, and ETS transcription factors.   Solomon RA, Connolly ES. Matrix metalloproteinase‑9 in cerebral
              Neurosurgery 2011;68:1667‑76.                       aneurysms. Neurosurgery 1997;41:642‑66.
           33.  Nakaoka  H, Tajima  A, Yoneyama T, Hosomichi K, Kasuya H,   51.  Takemura Y, Hirata Y, Sakata N, Nabeshima K, Takeshita M, Inoue T.
              Mizutani  T, Inoue  I. Gene expression profiling reveals distinct   Histopathologic characteristics of a saccular aneurysm arising in the
              molecular signatures associated with the rupture of intracranial   non‑branching segment of the distal middle cerebral artery. Pathol
              aneurysm. Stroke 2014;45:2239‑45.                   Res Pract 2010;206:391‑6.
           34.  Pera  J, Korostynski  M, Krzyszkowski  T, Czopek  J, Slowik  A,   52.  Nuki  Y, Tsou  TL, Kurihara  C, Kanematsu  M, Kanematsu  Y,
              Dziedzic T, Piechota M, Stachura K, Moskala M, Przewlocki R,   Hashimoto  T. Elastase‑induced intracranial aneurysms in
              Szczudlik  A. Gene expression profiles in  human ruptured and   hypertensive mice. Hypertension 2009;54:1337‑44.
              unruptured intracranial aneurysms: what is the role of inflammation?   53.  Dollery CM, Owen CA, Sukhova GK, Krettek A, Shapiro SD, Libby P.
              Stroke 2010;41:224‑31.                              Neutrophil elastase in human atherosclerotic plaques: production
           35.  Weinsheimer S, Lenk GM, van der Voet M, Land S, Ronkainen A,   by macrophages. Circulation 2003;107:2829‑36.
              Alafuzoff I, Kuivaniemi H, Tromp G. Integration of expression profiles   54.  Cohen JR, Keegan L, Sarfati I, Danna D, Ilardi C, Wise L. Neutrophil
              and genetic mapping data to identify candidate genes in intracranial   chemotaxis and neutrophil elastase in the aortic wall in patients with
              aneurysm. Physiol Genomics 2007;32:45‑57.           abdominal aortic aneurysms. J Invest Surg 1991;4:423‑30.
           36.  Krischek  B,  Kasuya  H,  Tajima  A,  Akagawa  H,  Sasaki  T,   55.  Eliason  JL, Hannawa  KK, Ailawadi  G, Sinha  I, Ford  JW,
              Yoneyama  T, Ujiie  H, Kubo  O, Bonin  M, Takakura  K, Hori  T,   Deogracias MP, Roelofs KJ, Woodrum DT, Ennis TL, Henke PK,
              Inoue I. Network‑based gene expression analysis of intracranial   Stanley JC, Thompson RW, Upchurch GR. Neutrophil depletion
              aneurysm tissue reveals role of antigen presenting cells. Neuroscience   inhibits  experimental abdominal aortic  aneurysm  formation.
              2008;154:1398‑407.                                  Circulation 2005;112:232‑40.
           37.  Nakajima N, Nagahiro S, Sano T, Satomi J, Satoh K. Phenotypic   56.  Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N. Cathepsin B,
              modulation of smooth muscle cells in human cerebral aneurysmal   K, and S are expressed in cerebral aneurysms and promote the
              walls. Acta Neuropathol 2000;100:475‑80.            progression of cerebral aneurysms. Stroke 2008;39:2603‑10.
           38.  Ruzevick J, Jackson C, Pradilla G, Garzon‑Muvdi T, Tamargo RJ.   57.  Loscalzo  J. The macrophage and fibrinolysis.  Semin Thromb
              Aneurysm formation in proinflammatory, transgenic haptoglobin   Hemost 1996;22:503‑6.
              2‑2 mice. Neurosurgery 2013;72:70‑6.            58.  Gordon S, Taylor PR. Monocyte and macrophage heterogeneity.
           39.  Nuki Y, Matsumoto MM, Tsang E, Young WL, van Rooijen N,   Nat Rev Immunol 2005;5:953‑64.
              Kurihara C, Hashimoto T. Roles of macrophages in flow‑induced   59.  Boorsma CE, Draijer C, Melgert BN. Macrophage heterogeneity in
              outward vascular remodeling.  J  Cereb Blood Flow Metab   respiratory diseases. Mediators Inflamm 2013;2013:769214.
              2009;29:495‑503.                                60.  Wilson  HM. Macrophages heterogeneity in atherosclerosis ‑
           40.  Moehle CW, Bhamidipati CM, Alexander MR, Mehta GS, Irvine JN,   implications for therapy. J Cell Mol Med 2010;14:2055‑65.
              Salmon M, Upchurch GR, Jr, Kron IL, Owens GK, Ailawadi G. Bone   61.  Gordon S. Macrophage heterogeneity and tissue lipids. J Clin Invest
              marrow‑derived MCP1 required for experimental aortic aneurysm   2007;117:89‑93.
              formation and smooth muscle phenotypic modulation. J Thorac   62.  Mantovani A, Garlanda C, Locati M. Macrophage diversity and
              Cardiovasc Surg 2011;142:1567‑74.                   polarization in atherosclerosis: a question of balance. Arterioscler
           41.  Egashira  K. Molecular mechanisms mediating inflammation in   Thromb Vasc Biol 2009;29:1419‑23.
              vascular disease: special reference to monocyte chemoattractant   63.  Hasan  D, Chalouhi  N, Jabbour  P, Hashimoto  T. Macrophage
              protein‑1. Hypertension 2003;41:834‑41.             imbalance  (M1  vs. M2) and upregulation of mast cells in wall
           42.  Chalouhi N, Points L, Pierce GL, Ballas Z, Jabbour P, Hasan D.   of ruptured human cerebral aneurysms: preliminary results.
              Localized increase of chemokines in the lumen of human cerebral   J Neuroinflammation 2012;9:222.
              aneurysms. Stroke 2013;44:2594‑7.               64.  Amin K. The role of mast cells in allergic inflammation. Respir Med
           43.  Aoki T, Kataoka H, Shimamura M, Nakagami H, Wakayama K,   2012;106:9‑14.
              Moriwaki T, Ishibashi R, Nozaki K, Morishita R, Hashimoto N.   65.  Ishibashi R, Aoki T, Nishimura M, Hashimoto N, Miyamoto S.
              NF‑kappaB is a key mediator of cerebral aneurysm formation.   Contribution of mast cells to cerebral aneurysm formation. Curr
              Circulation 2007;116:2830‑40.                       Neurovasc Res 2010;7:113‑24.
           44.  Aoki  T, Kataoka  H, Nishimura  M, Ishibashi  R, Morishita  R,   66.  Bot I, de Jager SC, Zernecke A, Lindstedt KA, van Berkel TJ,
              Miyamoto S. Ets‑1 promotes the progression of cerebral aneurysm   Weber C, Biessen EA. Perivascular mast cells promote atherogenesis
              by inducing the expression of MCP‑1 in vascular smooth muscle   and induce plaque destabilization in apolipoprotein E‑deficient mice.
              cells. Gene Ther 2010;17:1117‑23.                   Circulation 2007;115:2516‑25.
           45.  Aoki  T, Kataoka  H, Nishimura  M, Ishibashi  R, Morishita  R,   67.  Shi GP, Lindholt JS. Mast cells in abdominal aortic aneurysms. Curr
              Miyamoto S. Regression of intracranial aneurysms by simultaneous   Vasc Pharmacol 2013;11:314‑26.


          Neuroimmunol Neuroinflammation | Volume 2 | Issue 2 | April 15, 2015                              113
   116   117   118   119   120   121   122   123   124   125   126