Page 62 - Read Online
P. 62

George et al. Mini-invasive Surg 2024;8:4  https://dx.doi.org/10.20517/2574-1225.2023.102  Page 23 of 23

                    Crohn’s capsule using a convolutional neural network: a multicentre pilot study. J Crohns Colitis 2022;16:169-72.  DOI  PubMed
               90.       Higuchi N, Hiraga H, Sasaki Y, et al. Automated evaluation of colon capsule endoscopic severity of ulcerative colitis using
                    ResNet50. PLoS One 2022;17:e0269728.  DOI  PubMed  PMC
               91.       Kratter T, Shapira N, Lev Y, et al. Deep learning multi-domain model provides accurate detection and grading of mucosal ulcers in
                    different capsule endoscopy types. Diagnostics 2022;12:2490.  DOI  PubMed  PMC
               92.       Mascarenhas M, Mendes F, Ribeiro T, et al. Deep learning and minimally invasive endoscopy: automatic classification of
                    pleomorphic gastric lesions in capsule endoscopy. Clin Transl Gastroenterol 2023;14:e00609.  DOI  PubMed  PMC
               93.       Zhou T, Han G, Li BN, et al. Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning
                    method. Comput Biol Med 2017;85:1-6.  DOI  PubMed
               94.       Wang X, Qian H, Ciaccio EJ, et al. Celiac disease diagnosis from videocapsule endoscopy images with residual learning and deep
                    feature extraction. Comput Methods Programs Biomed 2020;187:105236.  DOI  PubMed
               95.       Li BN, Wang X, Wang R, et al. Celiac disease detection from videocapsule endoscopy images using strip principal component
                    analysis. IEEE/ACM Trans Comput Biol Bioinform 2021;18:1396-404.  DOI  PubMed
               96.       Chetcuti Zammit S, McAlindon ME, Greenblatt E, et al. Quantification of celiac disease severity using video capsule endoscopy: a
                    comparison of human experts and machine learning algorithms. Curr Med Imaging 2023;19:1455-662.  DOI  PubMed  PMC
               97.       Wu X, Chen H, Gan T, Chen J, Ngo CW, Peng Q. Automatic hookworm detection in wireless capsule endoscopy images. IEEE Trans
                    Med Imaging 2016;35:1741-52.  DOI  PubMed
               98.       He JY, Wu X, Jiang YG, Peng Q, Jain R. Hookworm detection in wireless capsule endoscopy images with deep learning. IEEE Trans
                    Image Process 2018;27:2379-92.  DOI  PubMed
               99.       Gan T, Yang Y, Liu S, et al. Automatic detection of small intestinal hookworms in capsule endoscopy images based on a
                    convolutional neural network. Gastroenterol Res Pract 2021;2021:5682288.  DOI  PubMed  PMC
               100.      Nam JH, Hwang Y, Oh DJ, et al. Development of a deep learning-based software for calculating cleansing score in small bowel
                    capsule endoscopy. Sci Rep 2021;11:4417.  DOI  PubMed  PMC
               101.      Park J, Hwang Y, Nam JH, et al. Artificial intelligence that determines the clinical significance of capsule endoscopy images can
                    increase the efficiency of reading. PLoS One 2020;15:e0241474.  DOI  PubMed  PMC
               102.      Xing X, Yuan Y, Meng MQH. Zoom in lesions for better diagnosis: attention guided deformation network for WCE image
                    classification. IEEE Trans Med Imaging 2020;39:4047-59.  DOI  PubMed
               103.      Zhu M, Chen Z, Yuan Y. DSI-Net: deep synergistic interaction network for joint classification and segmentation with endoscope
                    images. IEEE Trans Med Imaging 2021;40:3315-25.  DOI  PubMed
               104.      Guo X, Zhang L, Hao Y, Zhang L, Liu Z, Liu J. Multiple abnormality classification in wireless capsule endoscopy images based on
                    EfficientNet using attention mechanism. Rev Sci Instrum 2021;92:094102.  DOI  PubMed
               105.      Goel N, Kaur S, Gunjan D, Mahapatra SJ. Investigating the significance of color space for abnormality detection in wireless capsule
                    endoscopy images. Biomed Signal Proces 2022;75:103624.  DOI
               106.      Yokote A, Umeno J, Kawasaki K, et al. Small bowel capsule endoscopy examination and open access database with artificial
                    intelligence: the SEE-artificial intelligence project. DEN Open 2024;4:e258.  DOI  PubMed  PMC
               107.      Ding Z, Shi H, Zhang H, et al. Artificial intelligence-based diagnosis of abnormalities in small-bowel capsule endoscopy. Endoscopy
                    2023;55:44-51.  DOI  PubMed
               108.      LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-44.  DOI  PubMed
               109.      Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat
                    Mach Intell 2019;1:206-15.  DOI  PubMed  PMC
               110.      Koulaouzidis A, Iakovidis DK, Yung DE, et al. KID project: an internet-based digital video atlas of capsule endoscopy for research
                    purposes. Endosc Int Open 2017;5:E477-83.  DOI  PubMed  PMC
               111.      Deeba F, Islam M, Bui FM, Wahid KA. Performance assessment of a bleeding detection algorithm for endoscopic video based on
                    classifier fusion method and exhaustive feature selection. Biomed Signal Proces 2018;40:415-24.  DOI
               112.      Smedsrud PH, Thambawita V, Hicks SA, et al. Kvasir-capsule, a video capsule endoscopy dataset. Sci Data 2021;8:142.  DOI
               113.      Bernal J, Sánchez FJ, Fernández-Esparrach G, Gil D, Rodríguez C, Vilariño F. WM-DOVA maps for accurate polyp highlighting in
                    colonoscopy: validation vs. saliency maps from physicians. Comput Med Imaging Graph 2015;43:99-111.  DOI  PubMed
               114.      Coelho P, Pereira A, Leite A, Salgado M, Cunha A. A deep learning approach for red lesions detection in video capsule endoscopies.
                    In: Campilho A, Karray F, ter Haar Romeny B, editors. ICIAR 2018: Image analysis and recognition. Springer, Cham; 2018. pp. 553-
                    61.  DOI
               115.      Jha D, Smedsrud PH, Riegler MA, et al. Kvasir-SEG: a segmented polyp dataset. In: MMM 2020: MultiMedia modeling. Springer,
                    Cham; 2020. pp. 451-62.  DOI
               116.      Bernal J, Sánchez J, Vilariño F. Towards automatic polyp detection with a polyp appearance model. Pattern Recogn 2012;45:3166-
                    82.  DOI
   57   58   59   60   61   62   63   64   65   66   67