Page 62 - Read Online
P. 62
George et al. Mini-invasive Surg 2024;8:4 https://dx.doi.org/10.20517/2574-1225.2023.102 Page 23 of 23
Crohn’s capsule using a convolutional neural network: a multicentre pilot study. J Crohns Colitis 2022;16:169-72. DOI PubMed
90. Higuchi N, Hiraga H, Sasaki Y, et al. Automated evaluation of colon capsule endoscopic severity of ulcerative colitis using
ResNet50. PLoS One 2022;17:e0269728. DOI PubMed PMC
91. Kratter T, Shapira N, Lev Y, et al. Deep learning multi-domain model provides accurate detection and grading of mucosal ulcers in
different capsule endoscopy types. Diagnostics 2022;12:2490. DOI PubMed PMC
92. Mascarenhas M, Mendes F, Ribeiro T, et al. Deep learning and minimally invasive endoscopy: automatic classification of
pleomorphic gastric lesions in capsule endoscopy. Clin Transl Gastroenterol 2023;14:e00609. DOI PubMed PMC
93. Zhou T, Han G, Li BN, et al. Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning
method. Comput Biol Med 2017;85:1-6. DOI PubMed
94. Wang X, Qian H, Ciaccio EJ, et al. Celiac disease diagnosis from videocapsule endoscopy images with residual learning and deep
feature extraction. Comput Methods Programs Biomed 2020;187:105236. DOI PubMed
95. Li BN, Wang X, Wang R, et al. Celiac disease detection from videocapsule endoscopy images using strip principal component
analysis. IEEE/ACM Trans Comput Biol Bioinform 2021;18:1396-404. DOI PubMed
96. Chetcuti Zammit S, McAlindon ME, Greenblatt E, et al. Quantification of celiac disease severity using video capsule endoscopy: a
comparison of human experts and machine learning algorithms. Curr Med Imaging 2023;19:1455-662. DOI PubMed PMC
97. Wu X, Chen H, Gan T, Chen J, Ngo CW, Peng Q. Automatic hookworm detection in wireless capsule endoscopy images. IEEE Trans
Med Imaging 2016;35:1741-52. DOI PubMed
98. He JY, Wu X, Jiang YG, Peng Q, Jain R. Hookworm detection in wireless capsule endoscopy images with deep learning. IEEE Trans
Image Process 2018;27:2379-92. DOI PubMed
99. Gan T, Yang Y, Liu S, et al. Automatic detection of small intestinal hookworms in capsule endoscopy images based on a
convolutional neural network. Gastroenterol Res Pract 2021;2021:5682288. DOI PubMed PMC
100. Nam JH, Hwang Y, Oh DJ, et al. Development of a deep learning-based software for calculating cleansing score in small bowel
capsule endoscopy. Sci Rep 2021;11:4417. DOI PubMed PMC
101. Park J, Hwang Y, Nam JH, et al. Artificial intelligence that determines the clinical significance of capsule endoscopy images can
increase the efficiency of reading. PLoS One 2020;15:e0241474. DOI PubMed PMC
102. Xing X, Yuan Y, Meng MQH. Zoom in lesions for better diagnosis: attention guided deformation network for WCE image
classification. IEEE Trans Med Imaging 2020;39:4047-59. DOI PubMed
103. Zhu M, Chen Z, Yuan Y. DSI-Net: deep synergistic interaction network for joint classification and segmentation with endoscope
images. IEEE Trans Med Imaging 2021;40:3315-25. DOI PubMed
104. Guo X, Zhang L, Hao Y, Zhang L, Liu Z, Liu J. Multiple abnormality classification in wireless capsule endoscopy images based on
EfficientNet using attention mechanism. Rev Sci Instrum 2021;92:094102. DOI PubMed
105. Goel N, Kaur S, Gunjan D, Mahapatra SJ. Investigating the significance of color space for abnormality detection in wireless capsule
endoscopy images. Biomed Signal Proces 2022;75:103624. DOI
106. Yokote A, Umeno J, Kawasaki K, et al. Small bowel capsule endoscopy examination and open access database with artificial
intelligence: the SEE-artificial intelligence project. DEN Open 2024;4:e258. DOI PubMed PMC
107. Ding Z, Shi H, Zhang H, et al. Artificial intelligence-based diagnosis of abnormalities in small-bowel capsule endoscopy. Endoscopy
2023;55:44-51. DOI PubMed
108. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-44. DOI PubMed
109. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat
Mach Intell 2019;1:206-15. DOI PubMed PMC
110. Koulaouzidis A, Iakovidis DK, Yung DE, et al. KID project: an internet-based digital video atlas of capsule endoscopy for research
purposes. Endosc Int Open 2017;5:E477-83. DOI PubMed PMC
111. Deeba F, Islam M, Bui FM, Wahid KA. Performance assessment of a bleeding detection algorithm for endoscopic video based on
classifier fusion method and exhaustive feature selection. Biomed Signal Proces 2018;40:415-24. DOI
112. Smedsrud PH, Thambawita V, Hicks SA, et al. Kvasir-capsule, a video capsule endoscopy dataset. Sci Data 2021;8:142. DOI
113. Bernal J, Sánchez FJ, Fernández-Esparrach G, Gil D, Rodríguez C, Vilariño F. WM-DOVA maps for accurate polyp highlighting in
colonoscopy: validation vs. saliency maps from physicians. Comput Med Imaging Graph 2015;43:99-111. DOI PubMed
114. Coelho P, Pereira A, Leite A, Salgado M, Cunha A. A deep learning approach for red lesions detection in video capsule endoscopies.
In: Campilho A, Karray F, ter Haar Romeny B, editors. ICIAR 2018: Image analysis and recognition. Springer, Cham; 2018. pp. 553-
61. DOI
115. Jha D, Smedsrud PH, Riegler MA, et al. Kvasir-SEG: a segmented polyp dataset. In: MMM 2020: MultiMedia modeling. Springer,
Cham; 2020. pp. 451-62. DOI
116. Bernal J, Sánchez J, Vilariño F. Towards automatic polyp detection with a polyp appearance model. Pattern Recogn 2012;45:3166-
82. DOI