Page 60 - Read Online
P. 60
George et al. Mini-invasive Surg 2024;8:4 https://dx.doi.org/10.20517/2574-1225.2023.102 Page 21 of 23
endoscopy using a deep-learning model. Gastroenterology 2019;157:1044-54.e5. DOI PubMed
33. Majid A, Khan MA, Yasmin M, Rehman A, Yousafzai A, Tariq U. Classification of stomach infections: a paradigm of convolutional
neural network along with classical features fusion and selection. Microsc Res Tech 2020;83:562-76. DOI PubMed
34. Otani K, Nakada A, Kurose Y, et al. Automatic detection of different types of small-bowel lesions on capsule endoscopy images
using a newly developed deep convolutional neural network. Endoscopy 2020;52:786-91. DOI PubMed
35. Xia J, Xia T, Pan J, et al. Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy.
Gastrointest Endosc 2021;93:133-9.e4. DOI PubMed
36. Afonso J, Saraiva MJM, Ferreira JPS, et al. Development of a convolutional neural network for detection of erosions and ulcers with
distinct bleeding potential in capsule endoscopy. Tech Innov Gastrointest Endosc 2021;23:291-6. DOI
37. Mascarenhas Saraiva MJ, Afonso J, Ribeiro T, et al. Deep learning and capsule endoscopy: automatic identification and
differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network. BMJ Open
Gastroenterol 2021;8:e000753. DOI PubMed PMC
38. Afonso J, Saraiva MM, Ferreira JPS, et al. Automated detection of ulcers and erosions in capsule endoscopy images using a
convolutional neural network. Med Biol Eng Comput 2022;60:719-25. DOI PubMed
39. Mascarenhas M, Ribeiro T, Afonso J, et al. Deep learning and colon capsule endoscopy: automatic detection of blood and colonic
mucosal lesions using a convolutional neural network. Endosc Int Open 2022;10:E171-7. DOI PubMed PMC
40. Xiao P, Pan Y, Cai F, et al. A deep learning based framework for the classification of multi- class capsule gastroscope image in
gastroenterologic diagnosis. Front Physiol 2022;13:1060591. DOI PubMed PMC
41. Ribeiro T, Mascarenhas M, Afonso J, et al. Artificial intelligence and colon capsule endoscopy: automatic detection of ulcers and
erosions using a convolutional neural network. J Gastroenterol Hepatol 2022;37:2282-8. DOI PubMed
42. Raut V, Gunjan R, Shete VV, Eknath UD. Gastrointestinal tract disease segmentation and classification in wireless capsule
endoscopy using intelligent deep learning model. Comput Method Biomech Biomed Eng Imaging Vis 2023;11:606-22. DOI
43. Nakada A, Niikura R, Otani K, et al. Improved object detection artificial intelligence using the revised RetinaNet model for the
automatic detection of ulcerations, vascular lesions, and tumors in wireless capsule endoscopy. Biomedicines 2023;11:942. DOI
PubMed PMC
44. Gan T, Wu JC, Rao NN, Chen T, Liu B. A feasibility trial of computer-aided diagnosis for enteric lesions in capsule endoscopy.
World J Gastroenterol 2008;14:6929-35. DOI PubMed PMC
45. Arieira C, Monteiro S, de Castro FD, et al. Capsule endoscopy: is the software TOP 100 a reliable tool in suspected small bowel
bleeding? Dig Liver Dis 2019;51:1661-4. DOI PubMed
46. Vieira PM, Silva CP, Costa D, Vaz IF, Rolanda C, Lima CS. Automatic segmentation and detection of small bowel angioectasias in
WCE images. Ann Biomed Eng 2019;47:1446-62. DOI PubMed
47. Vezakis IA, Toumpaniaris P, Polydorou AA, Koutsouris D. A novel real-time automatic angioectasia detection method in wireless
capsule endoscopy video feed. Annu Int Conf IEEE Eng Med Biol Soc 2019;2019:4072-5. DOI PubMed
48. Leenhardt R, Vasseur P, Li C, et al; The CAD-CAP Database Working Group. A neural network algorithm for detection of GI angiectasia
during small-bowel capsule endoscopy. Gastrointest Endosc 2019;89:189-94. DOI PubMed
49. Tsuboi A, Oka S, Aoyama K, et al. Artificial intelligence using a convolutional neural network for automatic detection of small-
bowel angioectasia in capsule endoscopy images. Dig Endosc 2020;32:382-90. DOI PubMed
50. Aoki T, Yamada A, Kato Y, et al. Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-
based system: a multicenter study. Gastrointest Endosc 2021;93:165-73.e1. DOI PubMed
51. Hwang Y, Lee HH, Park C, et al. Improved classification and localization approach to small bowel capsule endoscopy using
convolutional neural network. Dig Endosc 2021;33:598-607. DOI PubMed
52. Hosoe N, Horie T, Tojo A, et al. Development of a deep-learning algorithm for small bowel-lesion detection and a study of the
improvement in the false-positive rate. J Clin Med 2022;11:3682. DOI PubMed PMC
53. Chu Y, Huang F, Gao M, et al. Convolutional neural network-based segmentation network applied to image recognition of
angiodysplasias lesion under capsule endoscopy. World J Gastroenterol 2023;29:879-89. DOI PubMed PMC
54. Leenhardt R, Vasseur P, Li Cynthia, et al. 403 A highly sensitive and highly specific convolutional neural network-based algorithm
for automated diagnosis of angiodysplasia in small bowel capsule endoscopy. Gastrointest Endosc 2018;87:AB78. DOI
55. Li B, Meng MQH, Lau JYW. Computer-aided small bowel tumor detection for capsule endoscopy. Artif Intell Med 2011;52:11-6.
DOI PubMed
56. Karargyris A, Bourbakis N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans Biomed
Eng 2011;58:2777-86. DOI PubMed
57. Barbosa DC, Roupar DB, Ramos JC, Tavares AC, Lima CS. Automatic small bowel tumor diagnosis by using multi-scale wavelet-
based analysis in wireless capsule endoscopy images. Biomed Eng Online 2012;11:3. DOI PubMed PMC
58. Mamonov AV, Figueiredo IN, Figueiredo PN, Tsai YHR. Automated polyp detection in colon capsule endoscopy. IEEE Trans Med
Imaging 2014;33:1488-502. DOI PubMed
59. Liu G, Yan G, Kuang S, Wang Y. Detection of small bowel tumor based on multi-scale curvelet analysis and fractal technology in
capsule endoscopy. Comput Biol Med 2016;70:131-8. DOI PubMed
60. Yang J, Chang L, Li S, He X, Zhu T. WCE polyp detection based on novel feature descriptor with normalized variance locality-
constrained linear coding. Int J Comput Assist Radiol Surg 2020;15:1291-302. DOI PubMed

