Page 60 - Read Online
P. 60

George et al. Mini-invasive Surg 2024;8:4  https://dx.doi.org/10.20517/2574-1225.2023.102  Page 21 of 23

                    endoscopy using a deep-learning model. Gastroenterology 2019;157:1044-54.e5.  DOI  PubMed
               33.       Majid A, Khan MA, Yasmin M, Rehman A, Yousafzai A, Tariq U. Classification of stomach infections: a paradigm of convolutional
                    neural network along with classical features fusion and selection. Microsc Res Tech 2020;83:562-76.  DOI  PubMed
               34.       Otani K, Nakada A, Kurose Y, et al. Automatic detection of different types of small-bowel lesions on capsule endoscopy images
                    using a newly developed deep convolutional neural network. Endoscopy 2020;52:786-91.  DOI  PubMed
               35.       Xia J, Xia T, Pan J, et al. Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy.
                    Gastrointest Endosc 2021;93:133-9.e4.  DOI  PubMed
               36.       Afonso J, Saraiva MJM, Ferreira JPS, et al. Development of a convolutional neural network for detection of erosions and ulcers with
                    distinct bleeding potential in capsule endoscopy. Tech Innov Gastrointest Endosc 2021;23:291-6.  DOI
               37.       Mascarenhas Saraiva MJ, Afonso J, Ribeiro T, et al. Deep learning and capsule endoscopy: automatic identification and
                    differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network. BMJ Open
                    Gastroenterol 2021;8:e000753.  DOI  PubMed  PMC
               38.       Afonso J, Saraiva MM, Ferreira JPS, et al. Automated detection of ulcers and erosions in capsule endoscopy images using a
                    convolutional neural network. Med Biol Eng Comput 2022;60:719-25.  DOI  PubMed
               39.       Mascarenhas M, Ribeiro T, Afonso J, et al. Deep learning and colon capsule endoscopy: automatic detection of blood and colonic
                    mucosal lesions using a convolutional neural network. Endosc Int Open 2022;10:E171-7.  DOI  PubMed  PMC
               40.       Xiao P, Pan Y, Cai F, et al. A deep learning based framework for the classification of multi- class capsule gastroscope image in
                    gastroenterologic diagnosis. Front Physiol 2022;13:1060591.  DOI  PubMed  PMC
               41.       Ribeiro T, Mascarenhas M, Afonso J, et al. Artificial intelligence and colon capsule endoscopy: automatic detection of ulcers and
                    erosions using a convolutional neural network. J Gastroenterol Hepatol 2022;37:2282-8.  DOI  PubMed
               42.       Raut V, Gunjan R, Shete VV, Eknath UD. Gastrointestinal tract disease segmentation and classification in wireless capsule
                    endoscopy using intelligent deep learning model. Comput Method Biomech Biomed Eng Imaging Vis 2023;11:606-22.  DOI
               43.       Nakada A, Niikura R, Otani K, et al. Improved object detection artificial intelligence using the revised RetinaNet model for the
                    automatic detection of ulcerations, vascular lesions, and tumors in wireless capsule endoscopy. Biomedicines 2023;11:942.  DOI
                    PubMed  PMC
               44.       Gan T, Wu JC, Rao NN, Chen T, Liu B. A feasibility trial of computer-aided diagnosis for enteric lesions in capsule endoscopy.
                    World J Gastroenterol 2008;14:6929-35.  DOI  PubMed  PMC
               45.       Arieira C, Monteiro S, de Castro FD, et al. Capsule endoscopy: is the software TOP 100 a reliable tool in suspected small bowel
                    bleeding? Dig Liver Dis 2019;51:1661-4.  DOI  PubMed
               46.       Vieira PM, Silva CP, Costa D, Vaz IF, Rolanda C, Lima CS. Automatic segmentation and detection of small bowel angioectasias in
                    WCE images. Ann Biomed Eng 2019;47:1446-62.  DOI  PubMed
               47.       Vezakis IA, Toumpaniaris P, Polydorou AA, Koutsouris D. A novel real-time automatic angioectasia detection method in wireless
                    capsule endoscopy video feed. Annu Int Conf IEEE Eng Med Biol Soc 2019;2019:4072-5.  DOI  PubMed
               48.       Leenhardt R, Vasseur P, Li C, et al; The CAD-CAP Database Working Group. A neural network algorithm for detection of GI angiectasia
                    during small-bowel capsule endoscopy. Gastrointest Endosc 2019;89:189-94.  DOI  PubMed
               49.       Tsuboi A, Oka S, Aoyama K, et al. Artificial intelligence using a convolutional neural network for automatic detection of small-
                    bowel angioectasia in capsule endoscopy images. Dig Endosc 2020;32:382-90.  DOI  PubMed
               50.       Aoki T, Yamada A, Kato Y, et al. Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-
                    based system: a multicenter study. Gastrointest Endosc 2021;93:165-73.e1.  DOI  PubMed
               51.       Hwang Y, Lee HH, Park C, et al. Improved classification and localization approach to small bowel capsule endoscopy using
                    convolutional neural network. Dig Endosc 2021;33:598-607.  DOI  PubMed
               52.       Hosoe N, Horie T, Tojo A, et al. Development of a deep-learning algorithm for small bowel-lesion detection and a study of the
                    improvement in the false-positive rate. J Clin Med 2022;11:3682.  DOI  PubMed  PMC
               53.       Chu Y, Huang F, Gao M, et al. Convolutional neural network-based segmentation network applied to image recognition of
                    angiodysplasias lesion under capsule endoscopy. World J Gastroenterol 2023;29:879-89.  DOI  PubMed  PMC
               54.       Leenhardt R, Vasseur P, Li Cynthia, et al. 403 A highly sensitive and highly specific convolutional neural network-based algorithm
                    for automated diagnosis of angiodysplasia in small bowel capsule endoscopy. Gastrointest Endosc 2018;87:AB78.  DOI
               55.       Li B, Meng MQH, Lau JYW. Computer-aided small bowel tumor detection for capsule endoscopy. Artif Intell Med 2011;52:11-6.
                    DOI  PubMed
               56.       Karargyris A, Bourbakis N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans Biomed
                    Eng 2011;58:2777-86.  DOI  PubMed
               57.       Barbosa DC, Roupar DB, Ramos JC, Tavares AC, Lima CS. Automatic small bowel tumor diagnosis by using multi-scale wavelet-
                    based analysis in wireless capsule endoscopy images. Biomed Eng Online 2012;11:3.  DOI  PubMed  PMC
               58.       Mamonov AV, Figueiredo IN, Figueiredo PN, Tsai YHR. Automated polyp detection in colon capsule endoscopy. IEEE Trans Med
                    Imaging 2014;33:1488-502.  DOI  PubMed
               59.       Liu G, Yan G, Kuang S, Wang Y. Detection of small bowel tumor based on multi-scale curvelet analysis and fractal technology in
                    capsule endoscopy. Comput Biol Med 2016;70:131-8.  DOI  PubMed
               60.       Yang J, Chang L, Li S, He X, Zhu T. WCE polyp detection based on novel feature descriptor with normalized variance locality-
                    constrained linear coding. Int J Comput Assist Radiol Surg 2020;15:1291-302.  DOI  PubMed
   55   56   57   58   59   60   61   62   63   64   65