Page 59 - Read Online
P. 59
Page 20 of 23 George et al. Mini-invasive Surg 2024;8:4 https://dx.doi.org/10.20517/2574-1225.2023.102
Technol 2009;33:575-81. DOI PubMed
5. Ghosh T, Fattah SA, Shahnaz C, Wahid KA. An automatic bleeding detection scheme in wireless capsule endoscopy based on
histogram of an RGB-indexed image. Annu Int Conf IEEE Eng Med Biol Soc 2014;2014:4683-6. DOI PubMed
6. Hassan AR, Haque MA. Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos. Comput
Methods Programs Biomed 2015;122:341-53. DOI PubMed
7. Pan G, Yan G, Qiu X, Cui J. Bleeding detection in wireless capsule endoscopy based on probabilistic neural network. J Med Syst
2011;35:1477-84. DOI PubMed
8. Li B, Meng MQH. Computer-aided detection of bleeding regions for capsule endoscopy images. IEEE Trans Biomed Eng
2009;56:1032-9. DOI PubMed
9. Yuan Y, Li B, Meng MQH. Bleeding frame and region detection in the wireless capsule endoscopy video. IEEE J Biomed Health
Inform 2016;20:624-30. DOI PubMed
10. Ghosh T, Fattah SA, Wahid KA, Zhu WP, Ahmad MO. Cluster based statistical feature extraction method for automatic bleeding
detection in wireless capsule endoscopy video. Comput Biol Med 2018;94:41-54. DOI PubMed
11. Pogorelov K, Suman S, Azmadi Hussin F, et al. Bleeding detection in wireless capsule endoscopy videos - Color versus texture
features. J Appl Clin Med Phys 2019;20:141-54. DOI PubMed PMC
12. Rathnamala S, Jenicka S. Automated bleeding detection in wireless capsule endoscopy images based on color feature extraction from
Gaussian mixture model superpixels. Med Biol Eng Comput 2021;59:969-87. DOI PubMed
13. Jia X, Meng MQH. A deep convolutional neural network for bleeding detection in wireless capsule endoscopy images. Annu Int Conf
IEEE Eng Med Biol Soc 2016;2016:639-42. DOI PubMed
14. Jia X, Meng MQH. Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features.
Annu Int Conf IEEE Eng Med Biol Soc 2017;2017:3154-7. DOI PubMed
15. Hajabdollahi M, Esfandiarpoor R, Najarian K, Karimi N, Samavi S, Reza Soroushmehr SM. Low complexity CNN structure for
automatic bleeding zone detection in wireless capsule endoscopy imaging. Annu Int Conf IEEE Eng Med Biol Soc 2019;2019:7227-
30. DOI PubMed
16. Kanakatte A, Ghose A. Precise bleeding and red lesions localization from capsule endoscopy using compact U-net. Annu Int Conf
IEEE Eng Med Biol Soc 2021;2021:3089-92. DOI PubMed
17. Ghosh T, Chakareski J. Deep transfer learning for automated intestinal bleeding detection in capsule endoscopy imaging. J Digit
Imaging 2021;34:404-17. DOI PubMed PMC
18. Ribeiro T, Saraiva MM, Ferreira JPS, et al. Artificial intelligence and capsule endoscopy: automatic detection of vascular lesions
using a convolutional neural network. Ann Gastroenterol 2021;34:820-8. DOI PubMed PMC
19. Mascarenhas Saraiva M, Ribeiro T, Afonso J, et al. Artificial intelligence and capsule endoscopy: automatic detection of small bowel
blood content using a convolutional neural network. GE Port J Gastroenterol 2022;29:331-8. DOI PubMed PMC
20. Muruganantham P, Balakrishnan SM. Attention aware deep learning model for wireless capsule endoscopy lesion classification and
localization. J Med Biol Eng 2022;42:157-68. DOI
21. Kundu AK, Fattah SA, Rizve MN. An automatic bleeding frame and region detection scheme for wireless capsule endoscopy videos
based on interplane intensity variation profile in normalized RGB color space. J Healthc Eng 2018;2018:9423062. DOI PubMed
PMC
22. Xing X, Jia X, Meng MQH. Bleeding detection in wireless capsule endoscopy image video using superpixel-color histogram and a
subspace KNN classifier. Annu Int Conf IEEE Eng Med Biol Soc 2018;2018:1-4. DOI PubMed
23. Charisis V, Hadjileontiadis LJ, Liatsos CN, Mavrogiannis CC, Sergiadis GD. Abnormal pattern detection in wireless capsule
endoscopy images using nonlinear analysis in RGB color space. In: 2010 Annual International Conference of the IEEE Engineering
in Medicine and Biology; 2010 Aug 31 - Sep 04; Buenos Aires, Argentina. IEEE; 2010. pp. 3674-7. DOI
24. Li B, Meng MQH. Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments.
Comput Biol Med 2009;39:141-7. DOI PubMed
25. Charisis VS, Hadjileontiadis LJ, Liatsos CN, Mavrogiannis CC, Sergiadis GD. Capsule endoscopy image analysis using texture
information from various colour models. Comput Methods Programs Biomed 2012;107:61-74. DOI PubMed
26. Iakovidis DK, Koulaouzidis A. Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential
adjunct for reviewing software. Gastrointest Endosc 2014;80:877-83. DOI PubMed
27. Fan S, Xu L, Fan Y, Wei K, Li L. Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy
images. Phys Med Biol 2018;63:165001. DOI PubMed
28. Khan MA, Sharif M, Akram T, Yasmin M, Nayak RS. Stomach deformities recognition using rank-based deep features selection. J
Med Syst 2019;43:329. DOI PubMed
29. Kundu AK, Fattah SA, Wahid KA. Multiple linear discriminant models for extracting salient characteristic patterns in capsule
endoscopy images for multi-disease detection. IEEE J Transl Eng Health Med 2020;8:3300111. DOI PubMed PMC
30. Wang S, Xing Y, Zhang L, Gao H, Zhang H. A systematic evaluation and optimization of automatic detection of ulcers in wireless
capsule endoscopy on a large dataset using deep convolutional neural networks. Phys Med Biol 2019;64:235014. DOI PubMed
31. Aoki T, Yamada A, Aoyama K, et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on
a deep convolutional neural network. Gastrointest Endosc 2019;89:357-63.e2. DOI PubMed
32. Ding Z, Shi H, Zhang H, et al. Gastroenterologist-level identification of small-bowel diseases and normal variants by capsule