Page 59 - Read Online
P. 59

Page 20 of 23            George et al. Mini-invasive Surg 2024;8:4  https://dx.doi.org/10.20517/2574-1225.2023.102

                    Technol 2009;33:575-81.  DOI  PubMed
               5.       Ghosh T, Fattah SA, Shahnaz C, Wahid KA. An automatic bleeding detection scheme in wireless capsule endoscopy based on
                    histogram of an RGB-indexed image. Annu Int Conf IEEE Eng Med Biol Soc 2014;2014:4683-6.  DOI  PubMed
               6.       Hassan AR, Haque MA. Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos. Comput
                    Methods Programs Biomed 2015;122:341-53.  DOI  PubMed
               7.       Pan G, Yan G, Qiu X, Cui J. Bleeding detection in wireless capsule endoscopy based on probabilistic neural network. J Med Syst
                    2011;35:1477-84.  DOI  PubMed
               8.       Li B, Meng MQH. Computer-aided detection of bleeding regions for capsule endoscopy images. IEEE Trans Biomed Eng
                    2009;56:1032-9.  DOI  PubMed
               9.       Yuan Y, Li B, Meng MQH. Bleeding frame and region detection in the wireless capsule endoscopy video. IEEE J Biomed Health
                    Inform 2016;20:624-30.  DOI  PubMed
               10.       Ghosh T, Fattah SA, Wahid KA, Zhu WP, Ahmad MO. Cluster based statistical feature extraction method for automatic bleeding
                    detection in wireless capsule endoscopy video. Comput Biol Med 2018;94:41-54.  DOI  PubMed
               11.       Pogorelov K, Suman S, Azmadi Hussin F, et al. Bleeding detection in wireless capsule endoscopy videos - Color versus texture
                    features. J Appl Clin Med Phys 2019;20:141-54.  DOI  PubMed  PMC
               12.       Rathnamala S, Jenicka S. Automated bleeding detection in wireless capsule endoscopy images based on color feature extraction from
                    Gaussian mixture model superpixels. Med Biol Eng Comput 2021;59:969-87.  DOI  PubMed
               13.       Jia X, Meng MQH. A deep convolutional neural network for bleeding detection in wireless capsule endoscopy images. Annu Int Conf
                    IEEE Eng Med Biol Soc 2016;2016:639-42.  DOI  PubMed
               14.       Jia X, Meng MQH. Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features.
                    Annu Int Conf IEEE Eng Med Biol Soc 2017;2017:3154-7.  DOI  PubMed
               15.       Hajabdollahi M, Esfandiarpoor R, Najarian K, Karimi N, Samavi S, Reza Soroushmehr SM. Low complexity CNN structure for
                    automatic bleeding zone detection in wireless capsule endoscopy imaging. Annu Int Conf IEEE Eng Med Biol Soc 2019;2019:7227-
                    30.  DOI  PubMed
               16.       Kanakatte A, Ghose A. Precise bleeding and red lesions localization from capsule endoscopy using compact U-net. Annu Int Conf
                    IEEE Eng Med Biol Soc 2021;2021:3089-92.  DOI  PubMed
               17.       Ghosh T, Chakareski J. Deep transfer learning for automated intestinal bleeding detection in capsule endoscopy imaging. J Digit
                    Imaging 2021;34:404-17.  DOI  PubMed  PMC
               18.       Ribeiro T, Saraiva MM, Ferreira JPS, et al. Artificial intelligence and capsule endoscopy: automatic detection of vascular lesions
                    using a convolutional neural network. Ann Gastroenterol 2021;34:820-8.  DOI  PubMed  PMC
               19.       Mascarenhas Saraiva M, Ribeiro T, Afonso J, et al. Artificial intelligence and capsule endoscopy: automatic detection of small bowel
                    blood content using a convolutional neural network. GE Port J Gastroenterol 2022;29:331-8.  DOI  PubMed  PMC
               20.       Muruganantham P, Balakrishnan SM. Attention aware deep learning model for wireless capsule endoscopy lesion classification and
                    localization. J Med Biol Eng 2022;42:157-68.  DOI
               21.       Kundu AK, Fattah SA, Rizve MN. An automatic bleeding frame and region detection scheme for wireless capsule endoscopy videos
                    based on interplane intensity variation profile in normalized RGB color space. J Healthc Eng 2018;2018:9423062.  DOI  PubMed
                    PMC
               22.       Xing X, Jia X, Meng MQH. Bleeding detection in wireless capsule endoscopy image video using superpixel-color histogram and a
                    subspace KNN classifier. Annu Int Conf IEEE Eng Med Biol Soc 2018;2018:1-4.  DOI  PubMed
               23.       Charisis V, Hadjileontiadis LJ, Liatsos CN, Mavrogiannis CC, Sergiadis GD. Abnormal pattern detection in wireless capsule
                    endoscopy images using nonlinear analysis in RGB color space. In: 2010 Annual International Conference of the IEEE Engineering
                    in Medicine and Biology; 2010 Aug 31 - Sep 04; Buenos Aires, Argentina. IEEE; 2010. pp. 3674-7.  DOI
               24.       Li B, Meng MQH. Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments.
                    Comput Biol Med 2009;39:141-7.  DOI  PubMed
               25.       Charisis VS, Hadjileontiadis LJ, Liatsos CN, Mavrogiannis CC, Sergiadis GD. Capsule endoscopy image analysis using texture
                    information from various colour models. Comput Methods Programs Biomed 2012;107:61-74.  DOI  PubMed
               26.       Iakovidis DK, Koulaouzidis A. Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential
                    adjunct for reviewing software. Gastrointest Endosc 2014;80:877-83.  DOI  PubMed
               27.       Fan S, Xu L, Fan Y, Wei K, Li L. Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy
                    images. Phys Med Biol 2018;63:165001.  DOI  PubMed
               28.       Khan MA, Sharif M, Akram T, Yasmin M, Nayak RS. Stomach deformities recognition using rank-based deep features selection. J
                    Med Syst 2019;43:329.  DOI  PubMed
               29.       Kundu AK, Fattah SA, Wahid KA. Multiple linear discriminant models for extracting salient characteristic patterns in capsule
                    endoscopy images for multi-disease detection. IEEE J Transl Eng Health Med 2020;8:3300111.  DOI  PubMed  PMC
               30.       Wang S, Xing Y, Zhang L, Gao H, Zhang H. A systematic evaluation and optimization of automatic detection of ulcers in wireless
                    capsule endoscopy on a large dataset using deep convolutional neural networks. Phys Med Biol 2019;64:235014.  DOI  PubMed
               31.       Aoki T, Yamada A, Aoyama K, et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on
                    a deep convolutional neural network. Gastrointest Endosc 2019;89:357-63.e2.  DOI  PubMed
               32.       Ding Z, Shi H, Zhang H, et al. Gastroenterologist-level identification of small-bowel diseases and normal variants by capsule
   54   55   56   57   58   59   60   61   62   63   64