Page 61 - Read Online
P. 61

Page 22 of 23            George et al. Mini-invasive Surg 2024;8:4  https://dx.doi.org/10.20517/2574-1225.2023.102

               61.       Vieira PM, Freitas NR, Valente J, Vaz IF, Rolanda C, Lima CS. Automatic detection of small bowel tumors in wireless capsule
                    endoscopy images using ensemble learning. Med Phys 2020;47:52-63.  DOI  PubMed
               62.       Yuan Y, Meng MQH. Deep learning for polyp recognition in wireless capsule endoscopy images. Med Phys 2017;44:1379-89.  DOI
                    PubMed
               63.       Saito H, Aoki T, Aoyama K, et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images
                    based on a deep convolutional neural network. Gastrointest Endosc 2020;92:144-51.e1.  DOI  PubMed
               64.       Yamada A, Niikura R, Otani K, Aoki T, Koike K. Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic
                    images using a deep convolutional neural network. Endoscopy 2021;53:832-6.  DOI  PubMed
               65.       Saraiva MM, Ferreira JPS, Cardoso H, et al. Artificial intelligence and colon capsule endoscopy: development of an automated
                    diagnostic system of protruding lesions in colon capsule endoscopy. Tech Coloproctol 2021;25:1243-8.  DOI  PubMed
               66.       Jain S, Seal A, Ojha A, et al. A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images.
                    Comput Biol Med 2021;137:104789.  DOI  PubMed
               67.       Zhou JX, Yang Z, Xi DH, et al. Enhanced segmentation of gastrointestinal polyps from capsule endoscopy images with artifacts
                    using ensemble learning. World J Gastroenterol 2022;28:5931-43.  DOI  PubMed  PMC
               68.       Mascarenhas M, Afonso J, Ribeiro T, et al. Performance of a deep learning system for automatic diagnosis of protruding lesions in
                    colon capsule endoscopy. Diagnostics 2022;12:1445.  DOI  PubMed  PMC
               69.       Gilabert P, Vitrià J, Laiz P, et al. Artificial intelligence to improve polyp detection and screening time in colon capsule endoscopy.
                    Front Med 2022;9:1000726.  DOI  PubMed  PMC
               70.       Liu F, Hua Z, Li J, Fan L. DBMF: dual branch multiscale feature fusion network for polyp segmentation. Comput Biol Med
                    2022;151:106304.  DOI  PubMed
               71.       Souaidi M, Lafraxo S, Kerkaou Z, El Ansari M, Koutti L. A multiscale polyp detection approach for GI tract images based on
                    improved DenseNet and single-shot multibox detector. Diagnostics 2023;13:733.  DOI  PubMed  PMC
               72.       Mascarenhas Saraiva M, Afonso J, Ribeiro T, et al. Artificial intelligence and capsule endoscopy: automatic detection of enteric
                    protruding lesions using a convolutional neural network. Rev Esp Enferm Dig 2023;115:75-9.  DOI  PubMed
               73.       Lafraxo S, Souaidi M, El Ansari M, Koutti L. Semantic segmentation of digestive abnormalities from WCE images by using
                    AttResU-Net architecture. Life 2023;13:719.  DOI  PubMed  PMC
               74.       Blanes-Vidal V, Baatrup G, Nadimi ES. Addressing priority challenges in the detection and assessment of colorectal polyps from
                    capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning. Acta Oncol 2019;58:S29-36.  DOI
                    PubMed
               75.       Piccirelli S, Mussetto A, Bellumat A, et al. New generation express view: an artificial intelligence software effectively reduces
                    capsule endoscopy reading times. Diagnostics 2022;12:1783.  DOI  PubMed  PMC
               76.       Eluxeo  meets  artificial  intelligence.  Available  from:  https://asset.fujifilm.com/www/uk/files/2021-05/
                    8fbe51b9718df4e16e3e3a545fa5593a/ELUXEO_CADEYE_Brochure.pdf. [Last accessed on 11 Mar 2024].
               77.       Lei II, Tompkins K, White E, et al. Study of capsule endoscopy delivery at scale through enhanced artificial intelligence-enabled
                    analysis (the CESCAIL study). Colorectal Dis 2023;25:1498-505.  DOI  PubMed
               78.       Kumar R, Zhao Q, Seshamani S, Mullin G, Hager G, Dassopoulos T. Assessment of Crohn’s disease lesions in wireless capsule
                    endoscopy images. IEEE Trans Biomed Eng 2012;59:355-62.  DOI  PubMed
               79.       Haji-Maghsoudi O, Talebpour A, Soltanian-Zadeh H, Haji-Maghsoodi N. Segmentation of Crohn, lymphangiectasia, xanthoma,
                    lymphoid hyperplasia and stenosis diseases in WCE. Stud Health Technol Inform 2012;180:143-7.  PubMed
               80.       Charisis VS, Hadjileontiadis LJ. Potential of hybrid adaptive filtering in inflammatory lesion detection from capsule endoscopy
                    images. World J Gastroenterol 2016;22:8641-57.  DOI  PubMed  PMC
               81.       Barash Y, Azaria L, Soffer S, et al. Ulcer severity grading in video capsule images of patients with Crohn’s disease: an ordinal neural
                    network solution. Gastrointest Endosc 2021;93:187-92.  DOI  PubMed
               82.       de Maissin A, Gomez T, Le Berre C, et al. P161 Computer aided detection of Crohn’s disease small bowel lesions in wireless capsule
                    endoscopy. J Crohns Colitis 2018;12:S178-9.  DOI
               83.       Klang E, Barash Y, Margalit R, et al. P285 Deep learning for automated detection of mucosal inflammation by capsule endoscopy
                    in Crohn’s disease. J Crohns Colitis 2019;13:S242.  DOI
               84.       Klang E, Barash Y, Margalit RY, et al. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule
                    endoscopy. Gastrointest Endosc 2020;91:606-13.e2.  DOI  PubMed
               85.       de Maissin A, Vallée R, Flamant M, et al. Multi-expert annotation of Crohn’s disease images of the small bowel for automatic
                    detection using a convolutional recurrent attention neural network. Endosc Int Open 2021;9:E1136-44.  DOI  PubMed  PMC
               86.       Klang E, Grinman A, Soffer S, et al. Automated detection of Crohn’s disease intestinal strictures on capsule endoscopy images using
                    deep neural networks. J Crohns Colitis 2021;15:749-56.  DOI  PubMed
               87.       Klang E, Kopylov U, Mortensen B, et al. A convolutional neural network deep learning model trained on CD ulcers images
                    accurately identifies NSAID ulcers. Front Med 2021;8:656493.  DOI  PubMed  PMC
               88.       Majtner T, Brodersen JB, Herp J, Kjeldsen J, Halling ML, Jensen MD. A deep learning framework for autonomous detection and
                    classification of Crohn’s disease lesions in the small bowel and colon with capsule endoscopy. Endosc Int Open 2021;9:E1361-70.
                    DOI  PubMed  PMC
               89.      Ferreira JPS, de Mascarenhas Saraiva MJQEC, Afonso JPL, et al. Identification of ulcers and erosions by the novel pillcam™
   56   57   58   59   60   61   62   63   64   65   66