Page 61 - Read Online
P. 61
Page 22 of 23 George et al. Mini-invasive Surg 2024;8:4 https://dx.doi.org/10.20517/2574-1225.2023.102
61. Vieira PM, Freitas NR, Valente J, Vaz IF, Rolanda C, Lima CS. Automatic detection of small bowel tumors in wireless capsule
endoscopy images using ensemble learning. Med Phys 2020;47:52-63. DOI PubMed
62. Yuan Y, Meng MQH. Deep learning for polyp recognition in wireless capsule endoscopy images. Med Phys 2017;44:1379-89. DOI
PubMed
63. Saito H, Aoki T, Aoyama K, et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images
based on a deep convolutional neural network. Gastrointest Endosc 2020;92:144-51.e1. DOI PubMed
64. Yamada A, Niikura R, Otani K, Aoki T, Koike K. Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic
images using a deep convolutional neural network. Endoscopy 2021;53:832-6. DOI PubMed
65. Saraiva MM, Ferreira JPS, Cardoso H, et al. Artificial intelligence and colon capsule endoscopy: development of an automated
diagnostic system of protruding lesions in colon capsule endoscopy. Tech Coloproctol 2021;25:1243-8. DOI PubMed
66. Jain S, Seal A, Ojha A, et al. A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images.
Comput Biol Med 2021;137:104789. DOI PubMed
67. Zhou JX, Yang Z, Xi DH, et al. Enhanced segmentation of gastrointestinal polyps from capsule endoscopy images with artifacts
using ensemble learning. World J Gastroenterol 2022;28:5931-43. DOI PubMed PMC
68. Mascarenhas M, Afonso J, Ribeiro T, et al. Performance of a deep learning system for automatic diagnosis of protruding lesions in
colon capsule endoscopy. Diagnostics 2022;12:1445. DOI PubMed PMC
69. Gilabert P, Vitrià J, Laiz P, et al. Artificial intelligence to improve polyp detection and screening time in colon capsule endoscopy.
Front Med 2022;9:1000726. DOI PubMed PMC
70. Liu F, Hua Z, Li J, Fan L. DBMF: dual branch multiscale feature fusion network for polyp segmentation. Comput Biol Med
2022;151:106304. DOI PubMed
71. Souaidi M, Lafraxo S, Kerkaou Z, El Ansari M, Koutti L. A multiscale polyp detection approach for GI tract images based on
improved DenseNet and single-shot multibox detector. Diagnostics 2023;13:733. DOI PubMed PMC
72. Mascarenhas Saraiva M, Afonso J, Ribeiro T, et al. Artificial intelligence and capsule endoscopy: automatic detection of enteric
protruding lesions using a convolutional neural network. Rev Esp Enferm Dig 2023;115:75-9. DOI PubMed
73. Lafraxo S, Souaidi M, El Ansari M, Koutti L. Semantic segmentation of digestive abnormalities from WCE images by using
AttResU-Net architecture. Life 2023;13:719. DOI PubMed PMC
74. Blanes-Vidal V, Baatrup G, Nadimi ES. Addressing priority challenges in the detection and assessment of colorectal polyps from
capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning. Acta Oncol 2019;58:S29-36. DOI
PubMed
75. Piccirelli S, Mussetto A, Bellumat A, et al. New generation express view: an artificial intelligence software effectively reduces
capsule endoscopy reading times. Diagnostics 2022;12:1783. DOI PubMed PMC
76. Eluxeo meets artificial intelligence. Available from: https://asset.fujifilm.com/www/uk/files/2021-05/
8fbe51b9718df4e16e3e3a545fa5593a/ELUXEO_CADEYE_Brochure.pdf. [Last accessed on 11 Mar 2024].
77. Lei II, Tompkins K, White E, et al. Study of capsule endoscopy delivery at scale through enhanced artificial intelligence-enabled
analysis (the CESCAIL study). Colorectal Dis 2023;25:1498-505. DOI PubMed
78. Kumar R, Zhao Q, Seshamani S, Mullin G, Hager G, Dassopoulos T. Assessment of Crohn’s disease lesions in wireless capsule
endoscopy images. IEEE Trans Biomed Eng 2012;59:355-62. DOI PubMed
79. Haji-Maghsoudi O, Talebpour A, Soltanian-Zadeh H, Haji-Maghsoodi N. Segmentation of Crohn, lymphangiectasia, xanthoma,
lymphoid hyperplasia and stenosis diseases in WCE. Stud Health Technol Inform 2012;180:143-7. PubMed
80. Charisis VS, Hadjileontiadis LJ. Potential of hybrid adaptive filtering in inflammatory lesion detection from capsule endoscopy
images. World J Gastroenterol 2016;22:8641-57. DOI PubMed PMC
81. Barash Y, Azaria L, Soffer S, et al. Ulcer severity grading in video capsule images of patients with Crohn’s disease: an ordinal neural
network solution. Gastrointest Endosc 2021;93:187-92. DOI PubMed
82. de Maissin A, Gomez T, Le Berre C, et al. P161 Computer aided detection of Crohn’s disease small bowel lesions in wireless capsule
endoscopy. J Crohns Colitis 2018;12:S178-9. DOI
83. Klang E, Barash Y, Margalit R, et al. P285 Deep learning for automated detection of mucosal inflammation by capsule endoscopy
in Crohn’s disease. J Crohns Colitis 2019;13:S242. DOI
84. Klang E, Barash Y, Margalit RY, et al. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule
endoscopy. Gastrointest Endosc 2020;91:606-13.e2. DOI PubMed
85. de Maissin A, Vallée R, Flamant M, et al. Multi-expert annotation of Crohn’s disease images of the small bowel for automatic
detection using a convolutional recurrent attention neural network. Endosc Int Open 2021;9:E1136-44. DOI PubMed PMC
86. Klang E, Grinman A, Soffer S, et al. Automated detection of Crohn’s disease intestinal strictures on capsule endoscopy images using
deep neural networks. J Crohns Colitis 2021;15:749-56. DOI PubMed
87. Klang E, Kopylov U, Mortensen B, et al. A convolutional neural network deep learning model trained on CD ulcers images
accurately identifies NSAID ulcers. Front Med 2021;8:656493. DOI PubMed PMC
88. Majtner T, Brodersen JB, Herp J, Kjeldsen J, Halling ML, Jensen MD. A deep learning framework for autonomous detection and
classification of Crohn’s disease lesions in the small bowel and colon with capsule endoscopy. Endosc Int Open 2021;9:E1361-70.
DOI PubMed PMC
89. Ferreira JPS, de Mascarenhas Saraiva MJQEC, Afonso JPL, et al. Identification of ulcers and erosions by the novel pillcam™