Page 132 - Read Online
P. 132

Melnik et al. J Transl Genet Genom 2022;6:1-45  https://dx.doi.org/10.20517/jtgg.2021.37  Page 35

               332.      Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett 2016;371:48-61.  DOI
                    PubMed  PMC
               333.      Khalifeh-Soltani A, McKleroy W, Sakuma S, et al. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty
                    acids. Nat Med 2014;20:175-83.  DOI  PubMed  PMC
               334.      Datta R, Lizama CO, Soltani AK, et al. Autoregulation of insulin receptor signaling through MFGE8 and the αvβ5 integrin. Proc Natl
                    Acad Sci U S A 2021;118:e2102171118.  DOI  PubMed  PMC
               335.      Heß K, Böger C, Behrens HM, Röcken C. Correlation between the expression of integrins in prostate cancer and clinical outcome in
                    1284 patients. Ann Diagn Pathol 2014;18:343-50.  DOI  PubMed
               336.      Sun LC, Luo J, Mackey LV, Fuselier JA, Coy DH. A conjugate of camptothecin and a somatostatin analog against prostate cancer
                    cell invasion via a possible signaling pathway involving PI3K/Akt, alphaVbeta3/alphaVbeta5 and MMP-2/-9. Cancer Lett
                    2007;246:157-66.  DOI  PubMed
               337.      Welton JL, Brennan P, Gurney M, et al. Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients
                    using a multiplex, aptamer-based protein array. J Extracell Vesicles 2016;5:31209.  DOI  PubMed  PMC
               338.      Lough AK. The phytanic acid content of the lipids of bovine tissues and milk. Lipids 1977;12:115-9.  DOI  PubMed
               339.      Brown PJ, Mei G, Gibberd FB, et al. Diet and Refsum's disease. The determination of phytanic acid and phytol in certain foods and
                    the application of this knowledge to the choice of suitable convenience foods for patients with Refsum's disease. J Hum Nutr Diet
                    1993;6:295-305.
               340.      Vetter W, Schröder M. Concentrations of phytanic acid and pristanic acid are higher in organic than in conventional dairy products
                    from the German market. Food Chemistry 2010;119:746-52.  DOI
               341.      Roca-Saavedra P, Mariño-Lorenzo P, Miranda JM, et al. Phytanic acid consumption and human health, risks, benefits and future
                    trends: a review. Food Chem 2017;221:237-47.  DOI  PubMed
               342.      Wright ME, Bowen P, Virtamo J, Albanes D, Gann PH. Estimated phytanic acid intake and prostate cancer risk: a prospective cohort
                    study. Int J Cancer 2012;131:1396-406.  DOI  PubMed  PMC
               343.      Dhaunsi GS, Alsaeid M, Akhtar S. Phytanic acid attenuates insulin-like growth factor-1 activity via nitric oxide-mediated γ-secretase
                    activation in rat aortic smooth muscle cells: possible implications for pathogenesis of infantile Refsum disease. Pediatr Res
                    2017;81:531-6.  DOI  PubMed
               344.      Murakami D, Okamoto I, Nagano O, et al. Presenilin-dependent gamma-secretase activity mediates the intramembranous cleavage of
                    CD44. Oncogene 2003;22:1511-6.  DOI  PubMed
               345.      Okamoto I, Kawano Y, Tsuiki H, et al. CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in
                    tumor cell migration. Oncogene 1999;18:1435-46.  DOI  PubMed
               346.      Hao JL, Cozzi PJ, Khatri A, Power CA, Li Y. CD147/EMMPRIN and CD44 are potential therapeutic targets for metastatic prostate
                    cancer. Curr Cancer Drug Targets 2010;10:287-306.  DOI  PubMed
               347.      Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.
                    Nat Med 2011;17:211-5.  DOI  PubMed  PMC
               348.      Miletti-González KE, Murphy K, Kumaran MN, et al. Identification of function for CD44 intracytoplasmic domain (CD44-ICD):
                    modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element. J Biol Chem 2012;287:18995-
                    9007.  DOI  PubMed  PMC
               349.      Xu H, Tian Y, Yuan X, et al. The role of CD44 in epithelial-mesenchymal transition and cancer development. Onco Targets Ther
                    2015;8:3783-92.  DOI  PubMed  PMC
               350.      Lai CJ, Lin CY, Liao WY, Hour TC, Wang HD, Chuu CP. CD44 promotes migration and invasion of docetaxel-resistant prostate
                    cancer cells likely via induction of hippo-yap signaling. Cells 2019;8:295.  DOI  PubMed  PMC
               351.      Tsao T, Beretov J, Ni J, et al. Cancer stem cells in prostate cancer radioresistance. Cancer Lett 2019;465:94-104.  DOI  PubMed
               352.      Okamoto I, Kawano Y, Murakami D, et al. Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling
                    pathway. J Cell Biol 2001;155:755-62.  DOI  PubMed  PMC
               353.      Senbanjo LT, AlJohani H, Majumdar S, Chellaiah MA. Characterization of CD44 intracellular domain interaction with RUNX2 in
                    PC3 human prostate cancer cells. Cell Commun Signal 2019;17:80.  DOI  PubMed  PMC
               354.      van der Deen M, Akech J, Wang T, et al. The cancer-related Runx2 protein enhances cell growth and responses to androgen and
                    TGFbeta in prostate cancer cells. J Cell Biochem 2010;109:828-37.  DOI  PubMed  PMC
               355.      Fowler M, Borazanci E, McGhee L, et al. RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to
                    activate transcription from the PSA upstream regulatory region. J Cell Biochem 2006;97:1-17.  DOI  PubMed
               356.      Little GH, Baniwal SK, Adisetiyo H, et al. Differential effects of RUNX2 on the androgen receptor in prostate cancer: synergistic
                    stimulation of a gene set exemplified by SNAI2 and subsequent invasiveness. Cancer Res 2014;74:2857-68.  DOI  PubMed  PMC
               357.      Schroeder TM, Jensen ED, Westendorf JJ. Runx2: a master organizer of gene transcription in developing and maturing osteoblasts.
                    Birth Defects Res C Embryo Today 2005;75:213-25.  DOI  PubMed
               358.      Baniwal SK, Khalid O, Gabet Y, et al. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis.
                    Mol Cancer 2010;9:258.  DOI  PubMed  PMC
               359.      Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally
                    relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and
                    mouse livers. J Nutr 2014;144:1495-500.  DOI  PubMed  PMC
               360.      Price AJ, Allen NE, Appleby PN, et al. Plasma phytanic acid concentration and risk of prostate cancer: results from the European
                    Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 2010;91:1769-76.  DOI  PubMed  PMC
   127   128   129   130   131   132   133   134   135   136   137