Page 132 - Read Online
P. 132
Melnik et al. J Transl Genet Genom 2022;6:1-45 https://dx.doi.org/10.20517/jtgg.2021.37 Page 35
332. Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett 2016;371:48-61. DOI
PubMed PMC
333. Khalifeh-Soltani A, McKleroy W, Sakuma S, et al. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty
acids. Nat Med 2014;20:175-83. DOI PubMed PMC
334. Datta R, Lizama CO, Soltani AK, et al. Autoregulation of insulin receptor signaling through MFGE8 and the αvβ5 integrin. Proc Natl
Acad Sci U S A 2021;118:e2102171118. DOI PubMed PMC
335. Heß K, Böger C, Behrens HM, Röcken C. Correlation between the expression of integrins in prostate cancer and clinical outcome in
1284 patients. Ann Diagn Pathol 2014;18:343-50. DOI PubMed
336. Sun LC, Luo J, Mackey LV, Fuselier JA, Coy DH. A conjugate of camptothecin and a somatostatin analog against prostate cancer
cell invasion via a possible signaling pathway involving PI3K/Akt, alphaVbeta3/alphaVbeta5 and MMP-2/-9. Cancer Lett
2007;246:157-66. DOI PubMed
337. Welton JL, Brennan P, Gurney M, et al. Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients
using a multiplex, aptamer-based protein array. J Extracell Vesicles 2016;5:31209. DOI PubMed PMC
338. Lough AK. The phytanic acid content of the lipids of bovine tissues and milk. Lipids 1977;12:115-9. DOI PubMed
339. Brown PJ, Mei G, Gibberd FB, et al. Diet and Refsum's disease. The determination of phytanic acid and phytol in certain foods and
the application of this knowledge to the choice of suitable convenience foods for patients with Refsum's disease. J Hum Nutr Diet
1993;6:295-305.
340. Vetter W, Schröder M. Concentrations of phytanic acid and pristanic acid are higher in organic than in conventional dairy products
from the German market. Food Chemistry 2010;119:746-52. DOI
341. Roca-Saavedra P, Mariño-Lorenzo P, Miranda JM, et al. Phytanic acid consumption and human health, risks, benefits and future
trends: a review. Food Chem 2017;221:237-47. DOI PubMed
342. Wright ME, Bowen P, Virtamo J, Albanes D, Gann PH. Estimated phytanic acid intake and prostate cancer risk: a prospective cohort
study. Int J Cancer 2012;131:1396-406. DOI PubMed PMC
343. Dhaunsi GS, Alsaeid M, Akhtar S. Phytanic acid attenuates insulin-like growth factor-1 activity via nitric oxide-mediated γ-secretase
activation in rat aortic smooth muscle cells: possible implications for pathogenesis of infantile Refsum disease. Pediatr Res
2017;81:531-6. DOI PubMed
344. Murakami D, Okamoto I, Nagano O, et al. Presenilin-dependent gamma-secretase activity mediates the intramembranous cleavage of
CD44. Oncogene 2003;22:1511-6. DOI PubMed
345. Okamoto I, Kawano Y, Tsuiki H, et al. CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in
tumor cell migration. Oncogene 1999;18:1435-46. DOI PubMed
346. Hao JL, Cozzi PJ, Khatri A, Power CA, Li Y. CD147/EMMPRIN and CD44 are potential therapeutic targets for metastatic prostate
cancer. Curr Cancer Drug Targets 2010;10:287-306. DOI PubMed
347. Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.
Nat Med 2011;17:211-5. DOI PubMed PMC
348. Miletti-González KE, Murphy K, Kumaran MN, et al. Identification of function for CD44 intracytoplasmic domain (CD44-ICD):
modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element. J Biol Chem 2012;287:18995-
9007. DOI PubMed PMC
349. Xu H, Tian Y, Yuan X, et al. The role of CD44 in epithelial-mesenchymal transition and cancer development. Onco Targets Ther
2015;8:3783-92. DOI PubMed PMC
350. Lai CJ, Lin CY, Liao WY, Hour TC, Wang HD, Chuu CP. CD44 promotes migration and invasion of docetaxel-resistant prostate
cancer cells likely via induction of hippo-yap signaling. Cells 2019;8:295. DOI PubMed PMC
351. Tsao T, Beretov J, Ni J, et al. Cancer stem cells in prostate cancer radioresistance. Cancer Lett 2019;465:94-104. DOI PubMed
352. Okamoto I, Kawano Y, Murakami D, et al. Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling
pathway. J Cell Biol 2001;155:755-62. DOI PubMed PMC
353. Senbanjo LT, AlJohani H, Majumdar S, Chellaiah MA. Characterization of CD44 intracellular domain interaction with RUNX2 in
PC3 human prostate cancer cells. Cell Commun Signal 2019;17:80. DOI PubMed PMC
354. van der Deen M, Akech J, Wang T, et al. The cancer-related Runx2 protein enhances cell growth and responses to androgen and
TGFbeta in prostate cancer cells. J Cell Biochem 2010;109:828-37. DOI PubMed PMC
355. Fowler M, Borazanci E, McGhee L, et al. RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to
activate transcription from the PSA upstream regulatory region. J Cell Biochem 2006;97:1-17. DOI PubMed
356. Little GH, Baniwal SK, Adisetiyo H, et al. Differential effects of RUNX2 on the androgen receptor in prostate cancer: synergistic
stimulation of a gene set exemplified by SNAI2 and subsequent invasiveness. Cancer Res 2014;74:2857-68. DOI PubMed PMC
357. Schroeder TM, Jensen ED, Westendorf JJ. Runx2: a master organizer of gene transcription in developing and maturing osteoblasts.
Birth Defects Res C Embryo Today 2005;75:213-25. DOI PubMed
358. Baniwal SK, Khalid O, Gabet Y, et al. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis.
Mol Cancer 2010;9:258. DOI PubMed PMC
359. Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally
relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and
mouse livers. J Nutr 2014;144:1495-500. DOI PubMed PMC
360. Price AJ, Allen NE, Appleby PN, et al. Plasma phytanic acid concentration and risk of prostate cancer: results from the European
Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 2010;91:1769-76. DOI PubMed PMC