Page 135 - Read Online
P. 135

Page 38                   Melnik et al. J Transl Genet Genom 2022;6:1-45  https://dx.doi.org/10.20517/jtgg.2021.37

               421.      Kirchner B, Pfaffl MW, Dumpler J, von Mutius E, Ege MJ. microRNA in native and processed cow's milk and its implication for the
                    farm milk effect on asthma. J Allergy Clin Immunol 2016;137:1893-1895.e13.  DOI  PubMed
               422.      Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-dependent polymerase chain reaction and elimination of confounders in sample
                    collection, storage, and analysis strengthen evidence that microRNAs in Bovine milk are bioavailable in humans. J Nutr
                    2018;148:153-9.  DOI  PubMed  PMC
               423.      Özdemir S. Identification and comparison of exosomal microRNAs in the milk and colostrum of two different cow breeds. Gene
                    2020;743:144609.  DOI  PubMed
               424.      Kleinjan M, van Herwijnen MJ, Libregts SF, van Neerven RJ, Feitsma AL, Wauben MH. Regular industrial processing of Bovine
                    milk impacts the integrity and molecular composition of extracellular vesicles. J Nutr 2021;151:1416-25.  DOI  PubMed
               425.      Yu S, Zhao Z, Sun L, Li P. Fermentation results in quantitative changes in milk-derived exosomes and different effects on cell growth
                    and survival. J Agric Food Chem 2017;65:1220-8.  DOI  PubMed
               426.      Melnik BC, Schmitz G. Pasteurized non-fermented cow's milk but not fermented milk is a promoter of mTORC1-driven aging and
                    increased mortality. Ageing Res Rev 2021;67:101270.  DOI  PubMed
               427.      Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M. Bovine milk contains microRNA and messenger RNA that are stable
                    under degradative conditions. J Dairy Sci 2012;95:4831-41.  DOI  PubMed
               428.      Benmoussa A, Lee CH, Laffont B, et al. Commercial dairy Cow Milk microRNAs resist digestion under simulated gastrointestinal
                    tract conditions. J Nutr 2016;146:2206-15.  DOI  PubMed
               429.      Kusuma RJ, Manca S, Friemel T, Sukreet S, Nguyen C, Zempleni J. Human vascular endothelial cells transport foreign exosomes
                    from cow's milk by endocytosis. Am J Physiol Cell Physiol 2016;310:C800-7.  DOI  PubMed  PMC
               430.      Melnik BC, Kakulas F, Geddes DT, et al. Milk miRNAs: simple nutrients or systemic functional regulators? Nutr Metab (Lond)
                    2016;13:42.  DOI  PubMed  PMC
               431.      Rani P, Vashisht M, Golla N, Shandilya S, Onteru SK, Singh D. Milk miRNAs encapsulated in exosomes are stable to human
                    digestion and permeable to intestinal barrier in vitro. J Funct Foods 2017;34:431-9.  DOI
               432.      Lönnerdal B. Human milk microRNAs/Exosomes: composition and biological effects. Composition and biological effects. Nestlé
                    Nutr Inst Workshop Ser 2019;90:83-92.  DOI  PubMed
               433.      Lin D, Chen T, Xie M, et al. Oral administration of bovine and porcine milk exosome alter miRNAs profiles in piglet serum. Sci Rep
                    2020;10:6983.  DOI  PubMed  PMC
               434.      Benmoussa A, Provost P. Milk MIcroRNAs in health and disease. Compr Rev Food Sci Food Saf 2019;18:703-22.  DOI  PubMed
               435.      Carrillo-Lozano E, Sebastián-Valles F, Knott-Torcal C. Circulating microRNAs in breast milk and their potential impact on the
                    infant. Nutrients 2020;12:3066.  DOI  PubMed  PMC
               436.      Chen Z, Xie Y, Luo J, et al. Milk exosome-derived miRNAs from water buffalo are implicated in immune response and metabolism
                    process. BMC Vet Res 2020;16:123.  DOI  PubMed  PMC
               437.      Sadri M, Shu J, Kachman SD, Cui J, Zempleni J. Milk exosomes and miRNA cross the placenta and promote embryo survival in
                    mice. Reproduction 2020;160:501-9.  DOI  PubMed
               438.      Reif S, Elbaum Shiff Y, Golan-Gerstl R. Milk-derived exosomes (MDEs) have a different biological effect on normal fetal colon
                    epithelial cells compared to colon tumor cells in a miRNA-dependent manner. J Transl Med 2019;17:325.  DOI  PubMed  PMC
               439.      Ozkan H, Tuzun F, Taheri S, et al. Epigenetic programming through breast milk and its impact on milk-siblings mating. Front Genet
                    2020;11:569232.  DOI  PubMed  PMC
               440.      Jin Y, Kotler JLM, Wang S, Huang B, Halpin JC, Street TO. The ER chaperones BiP and Grp94 regulate the formation of insulin-like
                    growth factor 2 (IGF2) oligomers. J Mol Biol 2021;433:166963.  DOI
               441.      Lu T, Wang Y, Xu K, et al. Co-downregulation of GRP78 and GRP94 induces apoptosis and inhibits migration in prostate cancer
                    cells. Open Life Sci 2019;14:384-91.  DOI  PubMed  PMC
               442.      Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother's milk: a purposeful contribution to the development of the infant microbiota
                    and immunity. Front Immunol 2018;9:361.  DOI  PubMed  PMC
               443.      Melnik BC, Schmitz G. MicroRNAs: milk's epigenetic regulators. Best Pract Res Clin Endocrinol Metab 2017;31:427-42.  DOI
                    PubMed
               444.      Stremmel W, Weiskirchen R, Melnik BC. Milk exosomes prevent intestinal inflammation in a genetic mouse model of ulcerative
                    colitis: a pilot experiment. Inflamm Intest Dis 2020;5:117-23.  DOI  PubMed  PMC
               445.      van Esch BCAM, Porbahaie M, Abbring S, et al. The impact of milk and its components on epigenetic programming of immune
                    function in early life and beyond: implications for allergy and asthma. Front Immunol 2020;11:2141.  DOI  PubMed  PMC
               446.      Zempleni J, Aguilar-Lozano A, Sadri M, et al. Biological activities of extracellular vesicles and their cargos from bovine and human
                    milk in humans and implications for infants. J Nutr 2017;147:3-10.  DOI  PubMed  PMC
               447.      Zempleni J, Sukreet S, Zhou F, Wu D, Mutai E. Milk-derived exosomes and metabolic regulation. Annu Rev Anim Biosci 2019;7:245-
                    62.  DOI  PubMed
               448.      Xie MY, Hou LJ, Sun JJ, et al. Porcine milk exosome miRNAS attenuate LPS-induced apoptosis through inhibiting TLR4/NF-κB
                    and p53 pathways in intestinal epithelial cells. J Agric Food Chem 2019;67:9477-91.  DOI  PubMed
               449.      Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-derived microRNAs of human milk and their effects on
                    infant health and development. Biomolecules 2021;11:851.  DOI  PubMed  PMC
               450.      Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019;17:3.  DOI
                    PubMed  PMC
               451.      Chen X, Gao C, Li H, et al. Identification and characterization of microRNAs in raw milk during different periods of lactation,
   130   131   132   133   134   135   136   137   138   139   140