Page 131 - Read Online
P. 131
Page 34 Melnik et al. J Transl Genet Genom 2022;6:1-45 https://dx.doi.org/10.20517/jtgg.2021.37
301. Han JM, Jeong SJ, Park MC, et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway.
Cell 2012;149:410-24. DOI PubMed
302. Yoon MS, Son K, Arauz E, Han JM, Kim S, Chen J. Leucyl-tRNA synthetase activates Vps34 in amino acid-sensing mTORC1
signaling. Cell Rep 2016;16:1510-7. DOI PubMed PMC
303. Choi H, Son JB, Kang J, et al. Leucine-induced localization of Leucyl-tRNA synthetase in lysosome membrane. Biochem Biophys
Res Commun 2017;493:1129-35. DOI PubMed
304. Kim JH, Lee C, Lee M, et al. Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA
synthetase and RagD interaction. Nat Commun 2017;8:732. DOI PubMed PMC
305. Lee M, Kim JH, Yoon I, et al. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1
signaling pathway. Proc Natl Acad Sci U S A 2018;115:E5279-88. DOI PubMed PMC
306. Yoon I, Nam M, Kim HK, et al. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1. Science
2020;367:205-10. DOI PubMed
307. Carroll B, Maetzel D, Maddocks OD, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. Elife
2016;5:e11058. DOI PubMed PMC
308. Groenewoud MJ, Zwartkruis FJ. Rheb and Rags come together at the lysosome to activate mTORC1. Biochem Soc Trans
2013;41:951-5. DOI PubMed
309. Jensen RG, Ferris AM, Lammi-keefe CJ, Henderson RA. Lipids of bovine and human milks: a comparison. J Dairy Sci 1990;73:223-
40. DOI PubMed
310. Qian L, Zhao A, Zhang Y, et al. Metabolomic approaches to explore chemical diversity of human breast-milk, formula milk and
bovine milk. Int J Mol Sci 2016;17:2128. DOI PubMed PMC
311. Bourlieu C, Michalski MC. Structure-function relationship of the milk fat globule. Curr Opin Clin Nutr Metab Care 2015;18:118-27.
DOI PubMed
312. Bassingthwaighte JB, Noodleman L, van der Vusse G, Glatz JF. Modeling of palmitate transport in the heart. Mol Cell Biochem
1989;88:51-8. DOI PubMed PMC
313. Suiter C, Singha SK, Khalili R, Shariat-Madar Z. Free fatty acids: circulating contributors of metabolic syndrome. Cardiovasc
Hematol Agents Med Chem 2018;16:20-34. DOI PubMed
314. Shaw RJ. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 2009;196:65-80.
DOI PubMed PMC
315. Carroll B, Dunlop EA. The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem J 2017;474:1453-66. DOI
PubMed
316. Hardie DG, Lin SC. AMP-activated protein kinase - not just an energy sensor. F1000Res 2017;6:1724. DOI
317. Kwon B, Querfurth HW. Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal
muscle cells: reversal by oleate is similar to metformin. Biochimie 2015;118:141-50. DOI PubMed
318. Yasuda M, Tanaka Y, Kume S, et al. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis
in podocytes. Biochim Biophys Acta 2014;1842:1097-108. DOI PubMed
319. Kumar S, Tikoo K. Independent role of PP2A and mTORc1 in palmitate induced podocyte death. Biochimie 2015;112:73-84. DOI
PubMed
320. Zhou YP, Wu R, Shen W, Yu HH, Yu SJ. Comparison of effects of oleic acid and palmitic acid on lipid deposition and
mTOR/S6K1/SREBP-1c pathway in HepG2 cells. Zhonghua Gan Zang Bing Za Zhi 2018;26:451-6. DOI PubMed
321. Tang NT, D Snook R, Brown MD, et al. Fatty-acid uptake in prostate cancer cells using dynamic microfluidic raman technology.
Molecules 2020;25:1652. DOI PubMed PMC
322. Kurahashi N, Inoue M, Iwasaki M, Sasazuki S, Tsugane AS; Japan Public Health Center-Based Prospective Study Group. Dairy
product, saturated fatty acid, and calcium intake and prostate cancer in a prospective cohort of Japanese men. Cancer Epidemiol
Biomarkers Prev 2008;17:930-7. DOI PubMed
323. Preble I, Zhang Z, Kopp R, et al. Dairy product consumption and prostate cancer risk in the United States. Nutrients 2019;11:1615.
DOI PubMed PMC
324. Li H, Xu W, Ma Y, Zhou S, Xiao R. Milk fat globule membrane protein promotes C C cell proliferation through the PI3K/Akt
2 12
signaling pathway. Int J Biol Macromol 2018;114:1305-14. DOI PubMed
325. Li H, Guan K, Li X, Ma Y, Zhou S. MFG-E8 induced differences in proteomic profiles in mouse C C cells and its effect on
2
12
PI3K/Akt and ERK signal pathways. Int J Biol Macromol 2019;124:681-8. DOI PubMed
326. Jinushi M, Nakazaki Y, Carrasco DR, et al. Milk fat globule EGF-8 promotes melanoma progression through coordinated Akt and
twist signaling in the tumor microenvironment. Cancer Res 2008;68:8889-98. DOI PubMed
327. Soki FN, Koh AJ, Jones JD, et al. Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8
(MFG-E8)-mediated efferocytosis. J Biol Chem 2014;289:24560-72. DOI PubMed PMC
328. Rikkert LG, de Rond L, van Dam A, et al. Detection of extracellular vesicles in plasma and urine of prostate cancer patients by flow
cytometry and surface plasmon resonance imaging. PLoS One 2020;15:e0233443. DOI PubMed PMC
329. Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE. Bovine milk exosome proteome. J Proteomics 2012;75:1486-92. DOI PubMed
330. Yamauchi M, Shimizu K, Rahman M, et al. Efficient method for isolation of exosomes from raw bovine milk. Drug Dev Ind Pharm
2019;45:359-64. DOI PubMed
331. Rahman MM, Shimizu K, Yamauchi M, et al. Acidification effects on isolation of extracellular vesicles from bovine milk. PLoS One
2019;14:e0222613. DOI PubMed PMC