Page 130 - Read Online
P. 130
Melnik et al. J Transl Genet Genom 2022;6:1-45 https://dx.doi.org/10.20517/jtgg.2021.37 Page 33
2005;93:175-7. DOI PubMed
268. Power O, Hallihan A, Jakeman P. Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino
Acids 2009;37:333-9. DOI PubMed
269. Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells.
Nutr Rev 2010;68:270-9. DOI PubMed PMC
270. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B. Slow and fast dietary proteins differently modulate
postprandial protein accretion. Proc Natl Acad Sci U S A 1997;94:14930-5. DOI PubMed PMC
271. Moore WT, Bowser SM, Fausnacht DW, Staley LL, Suh KS, Liu D. Beta cell function and the nutritional state: dietary factors that
influence insulin secretion. Curr Diab Rep 2015;15:76. DOI PubMed
272. Straus DS. Growth-stimulatory actions of insulin in vitro and in vivo. Endocr Rev 1984;5:356-69. DOI PubMed
273. Sandow J. Growth effects of insulin and insulin analogues. Arch Physiol Biochem 2009;115:72-85. DOI PubMed
274. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol
2011;12:21-35. DOI PubMed PMC
275. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell 2017;169:381-405. DOI PubMed PMC
276. Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol 2018;217:2273-89. DOI PubMed
PMC
277. McGuire M, Beerman KA. Nutritional sciences: from fundamentals to food (with table of food composition booklet). 3rd ed. Boston,
USA: Cengage Learning; 2018.
278. Lenders CM, Liu S, Wilmore DW, et al. Evaluation of a novel food composition database that includes glutamine and other amino
acids derived from gene sequencing data. Eur J Clin Nutr 2009;63:1433-9. DOI PubMed PMC
279. Durán RV, Oppliger W, Robitaille AM, et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012;47:349-58. DOI
PubMed
280. Durán RV, Hall MN. Glutaminolysis feeds mTORC1. Cell Cycle 2012;11:4107-8. DOI PubMed PMC
281. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. Am J Physiol
Endocrinol Metab 2009;296:E592-602. DOI PubMed PMC
282. Kim SG, Buel GR, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 2013;35:463-73. DOI
PubMed PMC
283. Jewell JL, Russell RC, Guan KL. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 2013;14:133-9. DOI PubMed
PMC
284. Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol 2014;24:400-6. DOI PubMed PMC
285. Zheng X, Liang Y, He Q, et al. Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth
factors and amino acids. Int J Mol Sci 2014;15:20753-69. DOI PubMed PMC
286. Averous J, Lambert-Langlais S, Carraro V, et al. Requirement for lysosomal localization of mTOR for its activation differs between
leucine and other amino acids. Cell Signal 2014;26:1918-27. DOI PubMed
287. Oshiro N, Rapley J, Avruch J. Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag
GTPase guanyl nucleotide charging. J Biol Chem 2014;289:2658-74. DOI PubMed PMC
288. Jewell JL, Kim YC, Russell RC, et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science
2015;347:194-8. DOI PubMed PMC
289. Wang S, Tsun ZY, Wolfson RL, et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to
mTORC1. Science 2015;347:188-94. DOI PubMed PMC
290. Duan Y, Li F, Tan K, et al. Key mediators of intracellular amino acids signaling to mTORC1 activation. Amino Acids 2015;47:857-
67. DOI PubMed
291. Kim J, Kim E. Rag GTPase in amino acid signaling. Amino Acids 2016;48:915-28. DOI PubMed
292. Powis K, De Virgilio C. Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling. Cell Discov
2016;2:15049. DOI PubMed PMC
293. Nicastro R, Sardu A, Panchaud N, De Virgilio C. The architecture of the rag GTPase signaling network. Biomolecules 2017;7:48.
DOI PubMed PMC
294. Wolfson RL, Sabatini DM. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab 2017;26:301-9. DOI
PubMed PMC
295. Ramlaul K, Aylett CHS. Signal integration in the (m)TORC1 growth pathway. Front Biol (Beijing) 2018;13:237-62. DOI PubMed
PMC
296. Li XZ, Yan XH. Sensors for the mTORC1 pathway regulated by amino acids. J Zhejiang Univ Sci B 2019;20:699-712. DOI
PubMed PMC
297. Zhuang Y, Wang XX, He J, He S, Yin Y. Recent advances in understanding of amino acid signaling to mTORC1 activation. Front
Biosci (Landmark Ed) 2019;24:971-82. DOI PubMed
298. Meng D, Yang Q, Wang H, et al. Glutamine and asparagine activate mTORC1 independently of Rag GTPases. J Biol Chem
2020;295:2890-9. DOI PubMed PMC
299. Segev N, Hay N. Hijacking leucyl-tRNA synthetase for amino acid-dependent regulation of TORC1. Mol Cell 2012;46:4-6. DOI
PubMed PMC
300. Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C. Leucyl-tRNA synthetase controls TORC1 via the
EGO complex. Mol Cell 2012;46:105-10. DOI PubMed