Page 134 - Read Online
P. 134

Melnik et al. J Transl Genet Genom 2022;6:1-45  https://dx.doi.org/10.20517/jtgg.2021.37  Page 37

               391.      Sun L, Gao Z, Luo L, Tan H, Zhang G. Estrogen affects cell growth and IGF-1 receptor expression in renal cell carcinoma. Onco
                    Targets Ther 2018;11:5873-8.  DOI  PubMed  PMC
               392.      Pandini G, Genua M, Frasca F, Vigneri R, Belfiore A. Sex steroids upregulate the IGF-1R in prostate cancer cells through a
                    nongenotropic pathway. Ann N Y Acad Sci 2009;1155:263-7.  DOI  PubMed
               393.      Alayev A, Salamon RS, Berger SM, et al. mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation. Oncogene
                    2016;35:3535-43.  DOI  PubMed  PMC
               394.      Migliaccio A, Castoria G, Di Domenico M, et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers
                    prostate cancer cell proliferation. EMBO J 2000;19:5406-17.  DOI  PubMed  PMC
               395.      Mannella  P,  Brinton  RD.  Estrogen  receptor  protein  interaction  with  phosphatidylinositol  3-kinase  leads  to  activation  of
                    phosphorylated Akt and extracellular signal-regulated kinase 1/2 in the same population of cortical neurons: a unified mechanism of
                    estrogen action. J Neurosci 2006;26:9439-47.  DOI  PubMed  PMC
               396.      Di Zazzo E, Galasso G, Giovannelli P, et al. Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget
                    2016;7:193-208.  DOI  PubMed  PMC
               397.      Ohlsson JA, Johansson M, Hansson H, et al. Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk
                    products. Int Dairy J 2017;73:151-4.  DOI
               398.      Miles FL, Neuhouser ML, Zhang ZF. Concentrated sugars and incidence of prostate cancer in a prospective cohort. Br J Nutr
                    2018;120:703-10.  DOI  PubMed  PMC
               399.      Marchesini G, Bua V, Brunori A, et al. Galactose elimination capacity and liver volume in aging man. Hepatology 1988;8:1079-83.
                    DOI  PubMed
               400.      Schnegg M, Lauterburg BH. Quantitative liver function in the elderly assessed by galactose elimination capacity, aminopyrine
                    demethylation and caffeine clearance. J Hepatol 1986;3:164-71.  DOI  PubMed
               401.      Cui X, Zuo P, Zhang Q, et al. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative
                    damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 2006;84:647-54.  DOI  PubMed
               402.      Sadigh-eteghad S, Majdi A, Mccann SK, et al. D-galactose-induced brain ageing model: a systematic review and meta-analysis on
                    cognitive outcomes and oxidative stress indices. PLoS ONE 2017;12:e0184122.  DOI  PubMed  PMC
               403.      Shwe T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Role of D-galactose-induced brain aging and its potential used for
                    therapeutic interventions. Exp Gerontol 2018;101:13-36.  DOI  PubMed
               404.      Azman KF, Zakaria R. D-Galactose-induced accelerated aging model: an overview. Biogerontology 2019;20:763-82.  DOI  PubMed
               405.      Shukla S, Srivastava JK, Shankar E, et al. Oxidative stress and antioxidant status in high-risk prostate cancer subjects. Diagnostics
                    (Basel) 2020;10:126.  DOI  PubMed  PMC
               406.      Chen L, Yao H, Chen X, et al. Ginsenoside Rg1 decreases oxidative stress and down-regulates AKT/mTOR signalling to attenuate
                    cognitive impairment in mice and senescence of neural stem cells induced by D-Galactose. Neurochem Res 2018;43:430-40.  DOI
                    PubMed
               407.      Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for
                    aggressive phenotype. Cancer Res 2008;68:1777-85.  DOI  PubMed
               408.      Khandrika L, Kumar B, Koul S, Maroni P, Koul HK. Oxidative stress in prostate cancer. Cancer Lett 2009;282:125-36.  DOI
                    PubMed  PMC
               409.      Gupta-Elera G, Garrett AR, Robison RA, O'Neill KL. The role of oxidative stress in prostate cancer. Eur J Cancer Prev 2012;21:155-
                    62.  DOI  PubMed
               410.      Paschos A, Pandya R, Duivenvoorden WC, Pinthus JH. Oxidative stress in prostate cancer: changing research concepts towards a
                    novel paradigm for prevention and therapeutics. Prostate Cancer Prostatic Dis 2013;16:217-25.  DOI  PubMed
               411.      Udensi UK, Tchounwou PB. Oxidative stress in prostate hyperplasia and carcinogenesis. J Exp Clin Cancer Res 2016;35:139.  DOI
                    PubMed  PMC
               412.      Kaya E, Ozgok Y, Zor M, et al. Oxidative stress parameters in patients with prostate cancer, benign prostatic hyperplasia and
                    asymptomatic inflammatory prostatitis: a prospective controlled study. Adv Clin Exp Med 2017;26:1095-9.  DOI  PubMed
               413.      Zhang Z, Jiang D, Wang C, et al. Polymorphisms in oxidative stress pathway genes and prostate cancer risk. Cancer Causes Control
                    2019;30:1365-75.  DOI  PubMed
               414.      Ahmed Amar SA, Eryilmaz R, Demir H, Aykan S, Demir C. Determination of oxidative stress levels and some antioxidant enzyme
                    activities in prostate cancer. Aging Male 2019;22:198-206.  DOI  PubMed
               415.      Zhao Y, Hu X, Liu Y, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer
                    2017;16:79.  DOI  PubMed  PMC
               416.      Bei Y, Wu X, Cretoiu D, et al. miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin. J Mol Cell
                    Cardiol 2018;115:130-41.  DOI  PubMed
               417.      Jiao G, Pan B, Zhou Z, Zhou L, Li Z, Zhang Z. MicroRNA-21 regulates cell proliferation and apoptosis in H O -stimulated rat spinal
                                                                                          2  2
                    cord neurons. Mol Med Rep 2015;12:7011-6.  DOI  PubMed
               418.      Golan-Gerstl R, Elbaum Shiff Y, Moshayoff V, Schecter D, Leshkowitz D, Reif S. Characterization and biological function of milk-
                    derived miRNAs. Mol Nutr Food Res 2017;61:1700009.  DOI  PubMed
               419.      Howard KM, Jati Kusuma R, Baier SR, et al. Loss of miRNAs during processing and storage of cow's (Bos taurus) milk. J Agric
                    Food Chem 2015;63:588-92.  DOI  PubMed  PMC
               420.      Manca S, Upadhyaya B, Mutai E, et al. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution
                    patterns. Sci Rep 2018;8:11321.  DOI  PubMed  PMC
   129   130   131   132   133   134   135   136   137   138   139