Page 134 - Read Online
P. 134
Melnik et al. J Transl Genet Genom 2022;6:1-45 https://dx.doi.org/10.20517/jtgg.2021.37 Page 37
391. Sun L, Gao Z, Luo L, Tan H, Zhang G. Estrogen affects cell growth and IGF-1 receptor expression in renal cell carcinoma. Onco
Targets Ther 2018;11:5873-8. DOI PubMed PMC
392. Pandini G, Genua M, Frasca F, Vigneri R, Belfiore A. Sex steroids upregulate the IGF-1R in prostate cancer cells through a
nongenotropic pathway. Ann N Y Acad Sci 2009;1155:263-7. DOI PubMed
393. Alayev A, Salamon RS, Berger SM, et al. mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation. Oncogene
2016;35:3535-43. DOI PubMed PMC
394. Migliaccio A, Castoria G, Di Domenico M, et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers
prostate cancer cell proliferation. EMBO J 2000;19:5406-17. DOI PubMed PMC
395. Mannella P, Brinton RD. Estrogen receptor protein interaction with phosphatidylinositol 3-kinase leads to activation of
phosphorylated Akt and extracellular signal-regulated kinase 1/2 in the same population of cortical neurons: a unified mechanism of
estrogen action. J Neurosci 2006;26:9439-47. DOI PubMed PMC
396. Di Zazzo E, Galasso G, Giovannelli P, et al. Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget
2016;7:193-208. DOI PubMed PMC
397. Ohlsson JA, Johansson M, Hansson H, et al. Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk
products. Int Dairy J 2017;73:151-4. DOI
398. Miles FL, Neuhouser ML, Zhang ZF. Concentrated sugars and incidence of prostate cancer in a prospective cohort. Br J Nutr
2018;120:703-10. DOI PubMed PMC
399. Marchesini G, Bua V, Brunori A, et al. Galactose elimination capacity and liver volume in aging man. Hepatology 1988;8:1079-83.
DOI PubMed
400. Schnegg M, Lauterburg BH. Quantitative liver function in the elderly assessed by galactose elimination capacity, aminopyrine
demethylation and caffeine clearance. J Hepatol 1986;3:164-71. DOI PubMed
401. Cui X, Zuo P, Zhang Q, et al. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative
damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 2006;84:647-54. DOI PubMed
402. Sadigh-eteghad S, Majdi A, Mccann SK, et al. D-galactose-induced brain ageing model: a systematic review and meta-analysis on
cognitive outcomes and oxidative stress indices. PLoS ONE 2017;12:e0184122. DOI PubMed PMC
403. Shwe T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Role of D-galactose-induced brain aging and its potential used for
therapeutic interventions. Exp Gerontol 2018;101:13-36. DOI PubMed
404. Azman KF, Zakaria R. D-Galactose-induced accelerated aging model: an overview. Biogerontology 2019;20:763-82. DOI PubMed
405. Shukla S, Srivastava JK, Shankar E, et al. Oxidative stress and antioxidant status in high-risk prostate cancer subjects. Diagnostics
(Basel) 2020;10:126. DOI PubMed PMC
406. Chen L, Yao H, Chen X, et al. Ginsenoside Rg1 decreases oxidative stress and down-regulates AKT/mTOR signalling to attenuate
cognitive impairment in mice and senescence of neural stem cells induced by D-Galactose. Neurochem Res 2018;43:430-40. DOI
PubMed
407. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for
aggressive phenotype. Cancer Res 2008;68:1777-85. DOI PubMed
408. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK. Oxidative stress in prostate cancer. Cancer Lett 2009;282:125-36. DOI
PubMed PMC
409. Gupta-Elera G, Garrett AR, Robison RA, O'Neill KL. The role of oxidative stress in prostate cancer. Eur J Cancer Prev 2012;21:155-
62. DOI PubMed
410. Paschos A, Pandya R, Duivenvoorden WC, Pinthus JH. Oxidative stress in prostate cancer: changing research concepts towards a
novel paradigm for prevention and therapeutics. Prostate Cancer Prostatic Dis 2013;16:217-25. DOI PubMed
411. Udensi UK, Tchounwou PB. Oxidative stress in prostate hyperplasia and carcinogenesis. J Exp Clin Cancer Res 2016;35:139. DOI
PubMed PMC
412. Kaya E, Ozgok Y, Zor M, et al. Oxidative stress parameters in patients with prostate cancer, benign prostatic hyperplasia and
asymptomatic inflammatory prostatitis: a prospective controlled study. Adv Clin Exp Med 2017;26:1095-9. DOI PubMed
413. Zhang Z, Jiang D, Wang C, et al. Polymorphisms in oxidative stress pathway genes and prostate cancer risk. Cancer Causes Control
2019;30:1365-75. DOI PubMed
414. Ahmed Amar SA, Eryilmaz R, Demir H, Aykan S, Demir C. Determination of oxidative stress levels and some antioxidant enzyme
activities in prostate cancer. Aging Male 2019;22:198-206. DOI PubMed
415. Zhao Y, Hu X, Liu Y, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer
2017;16:79. DOI PubMed PMC
416. Bei Y, Wu X, Cretoiu D, et al. miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin. J Mol Cell
Cardiol 2018;115:130-41. DOI PubMed
417. Jiao G, Pan B, Zhou Z, Zhou L, Li Z, Zhang Z. MicroRNA-21 regulates cell proliferation and apoptosis in H O -stimulated rat spinal
2 2
cord neurons. Mol Med Rep 2015;12:7011-6. DOI PubMed
418. Golan-Gerstl R, Elbaum Shiff Y, Moshayoff V, Schecter D, Leshkowitz D, Reif S. Characterization and biological function of milk-
derived miRNAs. Mol Nutr Food Res 2017;61:1700009. DOI PubMed
419. Howard KM, Jati Kusuma R, Baier SR, et al. Loss of miRNAs during processing and storage of cow's (Bos taurus) milk. J Agric
Food Chem 2015;63:588-92. DOI PubMed PMC
420. Manca S, Upadhyaya B, Mutai E, et al. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution
patterns. Sci Rep 2018;8:11321. DOI PubMed PMC